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S 5 MR RE IR BIUE AR . A SRy 200 DR W B 0 & 0 S0 A5 2R AR 1 28 T 1B« i R ] B b (A % A 5
I3 T (DAMP) B AR SN Z A (PRR) 15538 % , SRR SN i  (MOMP ) 45 4 T, B 4 0E 5
LRI G IR . AEICIERE b IR AT TSR RN 3 LW | B 28 GRS 4 KA DL« AR
FHIGPEA (ROS) i i &R, B ER R IR Z5 A S5 DB 5 A W e DS B 2 A, 5 W52 REAR S 30
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[Abstract] Sepsis is one of the leading causes of death among patients in intensive care unit (ICU). In recent
years, studies have confirmed that the pathogenesis of sepsis is closely associated with mitochondrial dysfunction. As
the core regulator maintaining cellular energy supply and intracellular homeostasis, mitochondria not only produce
adenosine triphosphate (ATP) through oxidative phosphorylation for energy provision but also participate in key
physiological processes such as signal transduction and inflammatory regulation. Abnormalities in their structure and
function have been proven to be extensively involved in the pathological progression of sepsis. This article first elaborates
on the intimate association between the inflammatory response in sepsis and mitochondria: mitochondria can release
mitochondrial damage-associated molecular pattern (DAMP) to activate pattern recognition receptor (PRR) signaling
pathways, and regulate cell apoptosis through mitochondrial outer membrane permeabilization (MOMP), forming a
vicious cycle of inflammation and mitochondrial damage. On this basis, it conducts an in-depth analysis of 4 core
mechanisms:oxidative stress leads to excessive accumulation of reactive oxygen species (ROS), damaging mitochondrial
structure and function; autophagy clears damaged mitochondria in the early stage of sepsis but is inhibited by
inflammatory signals in the later stage, exacerbating organ damage; imbalance between mitochondrial fusion and fission
triggers fragmentation, disrupting membrane potential and promoting ROS production; mitochondrial transfer exhibits
dual effects of pro-inflammatory damage and repair protection.Targeting the aforementioned pathological mechanisms,
this article summarizes potential targeted intervention strategies from both traditional Chinese and Western medicine
perspectives, including oxidative stress regulation by inhibiting ROS generation and enhancing antioxidant defense,
autophagy intervention by modulating the interaction between autophagy and inflammasomes, and dynamic regulation
targeting mitochondrial fusion/fission-related proteins. These strategies aim to restore mitochondrial homeostasis and
improve clinical prognosis.This article systematically sorts out the mechanisms of mitochondrial dysfunction in sepsis
and related intervention directions, providing a theoretical basis for the development of novel diagnostic and therapeutic
strategies and holding great significance for reducing the mortality rate of sepsis.
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PR i PR R i i 14 i e SO SR A T 7 |
LI A B P B A, RNy 42 B RAE SN G PR ACEED L
AR A SR KRR — IR 4 R
Ve FE R, 7F 3 [ T 0E WP B (intensive care unit, ICU ) 7,
WHERE (19 & 51 90 d S SESST ARGk 33.9% 5 35.5% %
TRl o R A R LA A B 20 B 7 AR R 2 R FLOR
T LR ARy B RE R, A5 S I RE R TLTE K
REE O I A AR P R T SR . AR TR
B & A MR B 8 AT R (AR 43403 , Sk iR 2 o i it
ZRME T B R ARE SN, RS R LRI D) RE R A2 e 7
B DI RERE AT AL ORI Z — o IR AT bR TE
JH BRI AR AL BOFE R L D45 H BT X A LR g+ T
R IEERAE | FEARIRRRAE AR O 2
1 BREEPENENTSERFEVH N RRE
L1 SRR 5 IREERE RAE SN « ZORAAAE Ay 20 L fE 127
BRI A5 5 e 0 BT i 42 o 1 DR A 2 L 4 R AR T g
REAFI, 5 Z RO I R A . LRMEIRT o - 2IE
T, TEBEA I R, AR I3 B D e e A% B A0 A% T Lo ARk
2l (mitochondrial deoxyribonucleic acid, mtDNA ) {4554 %
i 5 i S AL W8 1R 1L (oxidative phosphorylation, OXPHOS) &
P10 DR A% 56 PR 203 o R s e AR B 11 A, SR 2k
LRIy RE 1A AR 2 1, 3 o R AL A 2ok A4 5 A I % R %
P A LA BB R G5 45 AN G543 X 4 T
P8 AL SR FTIX AL DME S TIRERE G, SEL T RE A7 S
PR 1 = B . 856 DL BRSO ANUAT E A4
ZAEMZIRE , IR AT 5 A MDIR S S & (il oA TE B
AN P A RO ML, T RE AT R T B R 10 DG
Pl

JHRBERE e — P AR LI (1 S AE ST , SERLAA X 58 S 0 14
MR E AR BR T 5 405 AR AT AR S R R
Ak (pattern recognition receptor, PRR ) B BC A fih & s
L, U B (1 45 K 17 1 e b AR 475 4 G 3 T3 X (damage-
associated molecular pattern, DAMP) Bl ¥ 14 PRR 25
AN LR RIE T R AU TRIIRSE . ZORLA S ME (outer
mitochondrial membrane, OMM) i % 1 (mitochondrial outer
membrane permeabilization, MOMP) 2R A T- KX 2 5%
WEIT BB RS MOMP 2 IS 2 (ipopolysaccharide.
LPS). M8 2R HE A T - o (tumor necrosis factor- o , TNF-« )
G RAE N F | 15 1k & (reactive oxygen species, ROS) 4§ i
W%, 2k B bk U2 9 -2 £E 1 (B-cell lymphoma 2, Bel-2)
F I 1 Bax/Bak /138 1 5 B AN, (7 24 b A< 5 (8] B2 4
JEUN A0 i £ C (eytochromece C, Cys C) 5542 8 72 [H F B
T, T8 5 AU O TR AR T A R A IR SRR DR
1 (caspase) 19U SR 51 A T2 BEAL, Skt iy
9 mtDNA | o0 B 5. = B iR I 1 (adenosine triphosphate,
ATP) S5 B R A BT T, SX Se ) ST/ S ZRE AR DAMP
200 5 T A PRR SRS, AT 380 56 K. miDNA
LR DAMP fir EE My 2 —, B 2 K H

B R e . D B R - MRS TR
L T % ¥ (cy(:li(: guanosine monophosphate-adenosine
monophosphate synthase-stimulator of interferon genes, ¢cGAS-
STING ) 3 #% : i% tH (1) mtDNA I 8% cGAS 454, AL 2E iU 5R
TEMR SR - R R (cyclic guanosine monophosphate-
adenosine monophosphate, cGAMP ), cGAMP [ifi J5 35005 PN o [
H H STING, #i i) STING 41 55 JF 3#0% TANK 24545 3 1
(TANK-binding kinase 1, TBK1), iE i i R L5 5 T4 K
P85 KT 3 (interferon regulatory factor 3, IRF3), fe ¥k 1+
Z (interferon-I, TFN-T) FlRZ5%5 555 1T -xB (nuclear factor-xB,
NF-xB) (9335, FIRIE R K+ (40 TNF-o . AL 3R -6
(interleukin-6, 11.-6) ) {9 % 1‘5[5]0 @ Toll £ 32 A& 9 (Toll-
like receptor 9, TLR9) i % - miDNA & 45 & B R AL 1Y )i mg
WE - 5 W2 - 5 W5 1% 4% 1T % (cytosine-phosphate-guanine
dinucleotide, CpG) FLPF X —25H) 5 40T DNA AR{RL, BT 9
TLRO 5], TLRO {1 J& , il 1 #6FF 434k H T 88 (myeloid
differentiation factor 88, MyD88) Jii sl T Wi {5 5, 43 Bl B4 i
NF-kB Fl 22 %4 23 % A6 25 F1 3 B (mitogen activated protein
kinase, MAPK) {5538 %, SR 8l Kt 42 28 40 it IR F A9 3 s A
RN, — PR RAE R . A WE5ERW], miDNA-TLRO i
ST A e, 5 I K e R A AR R L 5 1R
A A5 . A, OO R 1 R LA P s
FERGY , WEAE RN AL ARS8 i BT NOD A2 14
F A 3(NOD-like receptor protein 3, NLRP3) 4 /IMAAE 13
GRER R TEMERERAE T, DL _E SR SE SRR N T BRI
HE—E IR T Lk A5 I OMM 38535 1k , B R 988 B2 Y
AGPEDRER . 3ok A& A0 PR 18 ik 25 T B A b
N EARHEE , A B A B YIRE RS .

1.2 SRR B A R A5 e R )" T JEE

1.2.1 AR AR R AL« SORn AR B A I e 1A Y
(e RN 125 da o W e S S Y RS SO L N
LI 26 3 43 2k k7 8 OXPHOS & 428 7 2B K it ATP, D) 4k
FEARTIRE, LA YA B A% B 4% (electron transport
chain, ETC) 259 1 ~ VIR Q. Cys C 4 T8k,
TR R AR R TR R B WS — TR (nicotinamide adenine
dinucleotide, NADH ) Flid Ji 714 8 2% i BE0% — 4% 1 12 (flavin
adenine dinucleotide reduced form, FADH,) 43+ B fer
B 25 Va1 SR 5 &l T aAZ A T Q IR A%k
BEAEY ., Cys CEAYIN , ZE5Y 1T ~ VI H FEAM
BT s ATP G 8 (A V) TR H G B A6 B 101 3 A=
W ATP., SuERIn, 7EiZad ferh s G 1 AN R] A /b ey
Tttt B A B T (0,0), O AR e e
IE (P EE AR T, 75 S — 4 AL A A i (inducible nitric oxide
synthase, iNOS) s A i — A A& (nitric oxide, NO), NO 5
O, PR Sz 7 A Rl 80T Al PR 6 ( peroxynitrite, ONOO™), %
AR AT R e A ETC B A4 (T LIV,
ATP &), BB HLAL T35 | 5 IR T 46 LT 2R, e 3
ATP A B WA A, TR P RS PR 1
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i R A Qi oK, 20 480F) A2 BR L dH UL OXPHOS 1]
A AR T L DD 0 . RS S o g A B P SR A
JRUAF 5 FARE 28 B, (EL DK H: ATP Jsi/b | FLIR 2 HE AL, SR ALk
JE A KRR R B AR | SRR BT 2 8 E
TR . ANREEAE I B /N b R A T DL iR Rl ARt
Wt BLFLIRME R B R AL | 40 0 i, DA T 51 T AL
ERE R EHEE

1.2.2 A S Lok AR g A ¢ TE IR BEAE 1 Bk
TR, Sy 40 14 B AR 25 52 A o 2 AR M D42 L IX AR
JHTEE WAL U W] . FERRFEIE R, LPS 5§ v- T
= (interferon-vy , IFN-v ) B B E K EIHFFH T -1a
(hypoxia—inducihle factor-1 o, HIF-1c ) 138 7% 5 00 25 2% 40
% H (mammalian target of rapamycin, mTOR ), KB 4 it
m] M1 R AR AL, TR s me e Q. X — R s g i A
ARy A A A BT 14 G LA 4L B R EURL, B 2 iNOS-
NO R &I SRR DI RE B A5 e K A Bl T2
SRS IR RN . 2 MR R , RS A SORE L0
F mTOR {5 532415 HIF-1o 1EVET R, 400 AMEBRE AR5
OXPHOS 14 XU 1), d5e 2 PR 36 e A 3 1175 o) B B2 ORI, fiE
Ok RS I By R, e S s N, e
EFTA YT OCHEAE T HLAM R0 1 P05 0 P 4 o
o BESERE FVE AR , 1000 10 137 o DU K A2 Lok AR ) g
T OXPHOS,, LU G B RS AK S 4 B D o

1.3 JREIE 5 LORLR A I 8 SRR N U HE 2R AR T
ROS {7 A= HHUAL BT R G KA, ROS i 225 Lk
PREE R mtDNA AR, e 26 BOAS 7T 308 ) 440 i 46
Ui KA T IEH B BLF L ROS J& ETC 7£ OXPHOS
AR AR, T T AR S S, 0 B ROS A
W AR ALY I AL T ( superoxide dismutase, SOD ). i EHAL A
it} (catalase, CAT) S53i K LA BTy JHC 25 ARUHE 1T 52 ) 4 0 1 5 2E
FROIGE. FEMFRAE i AR P, LPS S5 57 A A S A IR
(I NO) &30 ETC E4% 1 MANV, il e £t , f2 £
28 B & ROS (mitochondrial ROS, mROS) Y K & = 4, i &
SEALNT . HEUR PG 3 24245 : D ROS-miDNA-NLRP3
il : ROS IR mtDNA, i HAE AL J5 BB Z I, s NLRP3
SRAE/NVA, AR HE TL-13 R, 38 o il 72 38 7 1, #2071
PR7CK 5 ) ¥ B mROS 1 75 5 2R 7 38 385 11 4 . 1L,
(mitochondrial permeability transition pore, MPTP) Jik, S5
Cys C 260 TP TREHE FEH ATP IEHR caspase LB
HHEA AT s Q) FAL mDNA £ DAMP 437, AL
S NLRP3 R/ IMA, iR 3T caspase-1 % Tl S#E—245
IR LR AR, B BRI ER . AN, ROS 7 T 34
SRBHE IR ETE %, R ARAE S, A WFFE R, e A A o 7
1 AR NF-xB 34 AE4M#17 (inhibitor of NF-kB kinase, IKK)
Xt NF-B # ] [AF (inhibitor of NF-xB, IxB) (¥ B2 1k 5%
fift, TG NF-xB, 15 AL NF-xB BJ5H02ARZ, E 3) TNF- o |
IL-6 Z54 4 N THEs- Y SRS %M, ROS i Al sd it
T MAPK 05 , Q20 M A5 9815 35 (extracellular signal-

regulated kinase, ERK). c-Jun Z A i1 il ( c-Jun N-terminal
kinase, JNK) Fl p38 MAPK %5, JA 5 4 2 s 5 &
AL TR I AR AE O WL 19 i LT T 0 T8 A A0 R £, TG
FEAEIRAS T , SR AR D) RE R A% -3 20 ETC BEHCK = 0,7, [R] i
R T g e P v — A 152 8 182 45 AL T (nicotinamide adenine
dinucleotide phosphate oxidase, NOX) & 4t 9% 1o B 07 , 2L [7)
TN ROS B AR R o X R A SR B 4050 L2
MEREENG B . 4 1 5 AN DNA, fith & 58 JE SR SN, e 4 B0
L 455 5 R B A FILC U 52 I RE 7 T M B8R 1) ROS 3R
P PR O IR BRI IR T I — K] .

L4 2O A WETEIRRRAE T AR

1.4.1  ZRifk [ ERLE « GORiR A mEXT i e A i s & ¢
HHE, TEMREEAE T 09 Ok A D R e fiy v il o A AL
T bR 2 SR A B TR, OF X 2 B R A (R 3 AR
FUT L BRI % / SRS PINK] 5 E3
17 2 Parkin PMREIVE FH ) PINK 1-Parkin {4 AR K
RS . LR AT BN, 2R AR L 2 RRAIG, PINK A&
JEFURTE OMM IR A H S BERR AL , #EMHR SR E3
12 RIELMG Parkin, Parkin FiJ5 12 RIGIMEE A, 2 21005
St S E L Parkin, BN IE SBHL 2E— 2D HOR
LRMAIES . 5 ZRMBRICH OMM &1 5L
P S AW EEE 1 5:4% 3 (light chain 3, LC3) AHEAEH]
DR W Sk (U0 p62 , MR EE 1 L TAXT 255 21 1 55)
454,19 LC3 KAMEAE L i A W R 17 I 32 40 14 Sk
PRI AN BRSP4 BCL2/ JRUHE E1B 19 000
M H AE A 2 B 3 (BCL2/adenovirus E1B 19 000 interacting
protein 3, BNIP3 ) ) BRI AT VR A A WESZ AR AF Parkin Hak i)
HE@ R LC3 A EAEHIX S LC3 4543, 4 A .
142 JREEAE 5 LKA A W - TEIRFEAE L0, LPS A0S
PINK1-Parkin i #f LA BRSZ LR, (RAP AT RE s (H Rt
RAEFFLE, DO BN, PR Sz B %
RERFLLHEAT , AR R ], LPS B IFN- vy i (55 7 S Ak
SEERT 1 (signal transducer and activator of transcription 1,
STAT1) {538 & B NLRP3 48 /M, 53 caspase-1 il
caspase-11 i T6 I 55 037 ) Ze A A, 3 i [F i Parkin 25 1 B
IR PINK1-Parkin i ¢ BEL W 2ok 14 19 10 , 2 1752 1) 240 0
PEIRA T A MEHEAE T mROS il mDNA 3 7] B 8 0%
NLRP3, #E— 4% . Wa 282 BRTT R 1, AR f
#8111 1 (adaptor protein, phosphotyrosine leucine 1, APPL1)
ARG 2R LR 1, 720 mROS Al miDNA U, i if
caspase-1 i JEEIHE NLRP3 JE AL A Wil G ERER . IR
1% % Ak 85 H 4 8 (adenosine monophosphate-activated protein
kinase, AMPK) 1F >4 e A A AZ O 0835 B, vl 3l A B
fiE ik Parkin BERRAL, SEiELRi A FIIE ™ HeREAE R, s
B 2= 2 BEAL B 3 (sirtuin 3, Sirt3) 7] 3 3 AMPK-mTOR 3l
AR LR A I, B O LA AT L e S
AR B WS S5 U S2 A, 1 E T R R g
. Wi LC3 I p62 ATAE A ITAG i B rgdrak'
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PRI, SRS Y AL B0 R IR AERE VR YT (14 G HE SR

L5 SORiAA S Iy 2 B 0T IR FEAE I 52 ) < SRR B ) 2
Fi 3 ok Rl R A SRR, T ZORLA RIS | B 5 TIRE,
LISE R A0 M SR Y. FEIE R LT, Lok iR Rl A B T
16 S R AR 0 (R SR AR, T 73 AL ) DO s 3 32 0 e b AR O
W AW B, ORI RE G T2 IR ORI RS A
FR T, 23 )AL T OMM FY A 14 il 45 2 11 (mitofusins,
MFN1., MFN2) DA S A0 SR04 g B8 110 40 b 22 2 40 2 11 1
(optical atrophy 1, Opal) ; bR 24 B 3 A 1
(dynamin-related protein 1, Drpl ). SR10, IREIERAT,
LPS i S A AL R #0530 Opal A1 MEN1 932340870, Drpl
PRI, 3 RT3 2L R A, e HEZRL AR R
e R BERLAL, TN ROS BIZE. ROS HE— AR Z0k:
PREE ORI Drpl, F80L 2. I Ca™ B8 AT
38 o 45 1E P 22 B TR T 2R 1 W R T 2B (calcineurin/protein
phosphatase 2B, PP2B) L2k Drpl, #i 5 JLHE£8 2 ji 42
AT > X R AN MR AR A 4 P
BRI, R ERE B | SR R 2 2 B DI
AW R, TEMRFIE 2 00 2 S B0 b, Sind T RS
Opal KA, FEER IR W2, 51 /N
AT 5 AN A e

1.6 LR R TERREEAE T I ONE - IRBEAE P LR 1A%
R S LT RN, — 5 T , R AL 7% ] i S8 e A A0 MLt
FR AT A NS (neulrophil extracellular trap, NET) 75 e
BEAE TP OCHEAE L, S PR A e T — R R E . A
WF9E 201, e - LR B BB (mierovesicles, MYV)
T T AE AT ik % 8 a5 A 2. ek A0 R A
Wi MV 384552 1 4R 5 B fLEE 1 Gasdermin D GSDMD-N
vig b B, E— B NET 5 ROS, B8R AT e 2 A , [+
i, GSDMD-N ¥iij Ji BEVE N — Bl 5| R RAE R B 00 1, 5%
SRR PRI L O S 2 A RAEAE 50 MV 3l i
mtROS/GSDMD Hli i Jil NET 4= 55 ROS B, B mE A
PR S, LR A RS T A AN A A A L. 40
L TR] P KL A 5 B AT B T 498 5 i e A 0ok L
BT S IR R I . LRI B g WL L 455 A1 s
A (extracellular vesicles, EV) /5. % 15 40 K 4 (lunneling
nanotubes, TNT) /5 HURLIR B 5675 3 7=, A
TALRAT 5 Z AR AN M Rl DA B 5 2 S A ) g
Il AR . TN 3 3ek 240 0 )/ MISEAE I B e A i Lok AR
PEE AN S S Re AT . ARER A 4y R 1 (o
Drpl) A HT B H2 AR A 40 Jf B8 i 0 A 52 A 240 ., 436 5 4
i ATP 45 AL EALAE 1>, Theda %1 IR R, F
2 it A 5 1Y 28 B2 44 4 Y0 (mitochondria-enriched extracellular
vesicles, M-EV ) R 32 S0 2o 480 Ak 490 Tl A 08 5 400 0T =2 Ak
v HMWENRT la (peroxisnme proliferator-activated receptor
gamma coactivator 1o, PGC-1a ) 5518 BAL #E.0 L ATP A2
I, B v BT A AL T RE L 2E 0 2 st O I DD RE DT $ e it
Pifie 1. BeAh, 1] 78540 (mesenchymal stem cell, MSC)

HYUR  ARPEANE LR, v i E A R
EV SEHLIE 2F 20 U0 B A0S R B E 5 1 S 1) 2 2% B D) Rk
B, WEEAE I, I P S E 20 IS 1 | [ S i 7K fieb % i
LT YEAL AT T B0 ST PR XE R VA R IR SAUIILAE , MSC BES
It 0 ) A 2 R O A A ST D B 3 4 i IR
TR, Yol i 8 32 S I, 308 2k 80 A0S B 5 0 1) I 97
T BEARGOAS T B, DB Ml K IR A il %1 %6
iE S INE B A0 P B i L % o W A0, MISC. Rl 2o ek 7%
B TSRO A, ok KL A6 P9 198 B0t T2 o, 490 5 5 U 14 58 1 5
LA E B E S AR A0 A, 25 Z WAL 1 (sirtuin 1,
SIRT1) /PGC-1 o BlFE N ER AR W) K A 5 80 1 2 1 Sl
s [, TESRLIART B J5 o BTG | S T R AT BE
VLR e T P O L 07 5 S i R

2 HEENLRRRIE TR TR

2.1 ST LR E R B - AT SR
il ROS M2 J32 7= A K 3t S8 Ak B A 2R 5, vl A 500 M
BEAE A A AR B 0. pR R 2 A A SIRT1 0 8 4 ik
Wi Ak il 2 (superoxide dismutase 2, SOD2) (1 2= Z B ALVE
PR LR T DD A R B, © BRI X e i 22 2 T BE
BERSAT VAT 2 AN, Far R EERME Jy Sre KRS
TR IAER 0 — 51, AR MR RE Th R FE R SR, LSt v/ Ny F
P TLO2-59 BB Wk 2 FEAR/IN B Y ROS ZKF-, 30 B 1
AW D BRI  , FTRE IR TR YT IR BERE A
S PE IR B — R BT i& AR P 2 an 5 R e ROS FI
P [ (malondialdehyde, MDA ) 7K-F, #5# SOD 7 ¥, Jdi 4%
o RERE /N B LA VU, 00 SR SO, % 2 P it A3 4 R
AR EAh, FEZ A WSR2k A SOD K,
i HE ROS W5 %, R AEPTEAAE R X SeRF T %W, 4 X
LA ST IO K ) L ) T, R Sl A A ) ROS 2 AN
SR PR, BEAT S0 R R B E 5 S 1 S A 03, Ik
Il RIGTT B AR (4 7 )

2.2 FETEORAAR [ ] B . BT GOk AR B
0 S ] AT S R A WS R M IMA R A ELAE
B2 Jo 5 i 1) E J . WIS 6 BH SRR [ A i AT 5 3
NLRP3 % /NA 3T 5 3000 , DT o Jo 5 6 149 4 S S5 N
U caspase-1 i 1 FF i Parkin 25 1 30 2R AR B W e 0k 2%
PRI LA %S, i caspase-1 1 57 VX765 7] 38 1< 4171 il
STAT1/caspase i [, 356 F 6 A1 i A A7 14 B . M2 B Ak
Je Mk A5 T, e Lok AR AR 050, Ak, APPL F B3k 2k AT
Tk et A 1 g, 53 NLRP3 /MO , 0T [ 1A G
B A Beclin-1 933 235 A A2 (R DAMP A9 R, 005
PINK1-Parkin i i, {2 24 RA A W, 303 mTOR {5518 1
I R AMPK 315 [ A9 TE RIS BodsE A
PHB1 VB R ZR A 1 Wi i) JCHEIE A, RE A 1847 ) WA R 2
[ LC3 SERbiAR [ Wil BEAH BAE R, 00 ) 9815 2 P/ MAR 9%
WS R BT, WA O T8 A B PINK 1-Parrin il
e, A0 SRR 11 g, AT 2438 JTL 00 g £ A i
FKAS B AN G NLRP3 S E/MAN S AT, 181 A
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W 1 A 22 18 AR A P 2 A0 R 2R R A R
fi5 38 i mTOR- %% 5% K T EB (mTOR—transcription factor EB,
mTOR-TFEB ) 3 %38 Jin.Co LA A 19 0 06 28 , 41006 98 i 52 i,
VAR R O LA L BRI e, R o A
PR ] 90, BB I R E 5 2 ) RAE SN, I R TR 7 A1
BEOE LTS
2.3 FETLRBRRG /SR RIRTT TRk E A
503 BT e R e s HH P ) G BEVE F , HE re) s r
1R Bh F12 B SR BV I RIATT RN . 2T TS, ok
T A AT R A M R S R 2R B . TE T
MUHIJZ T, Polo FEILME 1 (polo-like kinase 1, PLK1) 13 |
Al 2R R ) 43 24 A D e T /) B A fg e it
P51 TR RS ZUMRI R 1B ST
¥ Drpl Ff-[1: 3% MEN2 F1 Opal , A0 1T LPS #5510
RARE AL R 2 T IR AR IESE T 3 — R i A
Bk s LERAGR I Drpl A~ S 09 B2, T E
1R SIRT1/PGC-1 o 8 B AR UELR LR A W & Az, I
DIIRE L WAk, 67% EAWANRYT TS Drpl/MFN2
FEIRRE T MR /N BB I ZORE AR B 127, x5 A Tl
RERC A A7 R AR B B UIAR OC . X SeiE g e ], LUkb
TR A /5324 $0 RS T TR e R TR T AR AL T BT
Jr 1l .
3 N

Sl BB YA LT 1o X P R S R B Lo e U e 1)
— 50 LR R RGHL . ST | JORE XU AT it 5T
TA WL R A — i, PRI AR . A W L Bl 12k
My F B A% AR 30, BRI T T B LT A J 11— K
Jrll . BRI, H TS T LR A AL TG YT e AR e AR 7 T
AR T a8 B I AR ARSI . HCAR IR
R G AT X 3R BT ZOR (A TR 7 T 15 i 1) 8 4 1k R
AR, IE EX T T 5 A R A 25 B D RE RS, B
TRAFE SRR FHA IR TS
FERHR I RS AR 25 hoe
Bk
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