· 发明与专利 ·

一种用于危重症患者抢救的血管通路便捷式采血装置 和多功能动脉压测量装置的设计与应用

刘海迎 房倩娜 李欣 黄冬雪 高燕 张越 沈悦好 天津医科大学总医院重症医学科,天津 300052 通信作者:沈悦好, Email; yuehaoshen@163.com

【摘要】 有创动脉血压(ABP)监测是危重症患者抢救的常用技术之一,能为医护人员提供实时、连续及动态的血压数据,对指导患者的治疗有重要意义。然而,目前传统的动脉导管采血技术、ABP、中心静脉压(CVP)调零及测量技术,存在操作繁琐、调零不准确、无法同时监测 ABP 和 CVP 等问题。此外,还可能增加血流感染及职业暴露风险。为此,天津医科大学总医院重症医学科的医护人员特设计了一种血管通路便捷式采血装置,并获得了国家实用新型专利(专利号: ZL 2023 2 2581247.4)。该血管通路便捷式采血装置包括连接管、标本采集结构、血液抽吸结构,以及多功能测压装置的激光发射结构、测压转换结构和血管通路便捷式采血装置。该装置通过优化采血操作及简化测压流程,降低了患者发生血流感染的风险并减轻了医护人员职业暴露的风险,可确保测压零点调节的准确性,保证测量数据的真实可靠;同时,支持 ABP 和 CVP 同步监测,节约了医疗耗材,减轻了医护人员的工作负担,且操作简便、安全、高效,可满足临床工作需求,值得推广。

【关键词】 血管通路; 采血装置; 多功能动脉压测量装置; 中心静脉压; 设计; 应用基金项目:国家实用新型专利(ZL 2023 2 2581247.4);天津市教委科研计划项目(2023YBGX03) DOI:10.3969/j.issn.1008-9691.2025.02.018

Design and application of a portable vascular access blood collection device and multifunctional arterial pressure monitoring device

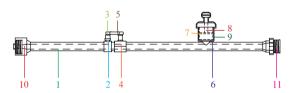
Liu Haiying, Fang Qianna, Li Xin, Huang Dongxue, Gao Yan, Zhang Yue, Shen Yuehao Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China Corresponding author: Shen Yuehao, Email: yuehaoshen@163.com

[Abstract] The invasive arterial blood pressure (ABP) monitoring technique is widely utilized in the management of critically ill patients, providing medical professionals with real-time, continuous, and dynamic blood pressure data that plays a crucial role in guiding patient treatment. However, current traditional methods for arterial catheter blood collection and zero setting and measurement technology for ABP and central venous pressure (CVP) present certain issues such as complex operation procedures, inaccurate zero setting, and the inability to simultaneously monitor both ABP and CVP. Additionally, these methods may increase the risk of bloodstream infection and occupational exposure. Therefore, the department of critical care medicine at Tianjin Medical University General Hospital has developed a vascular access convenient blood collection device which has been granted a National Utility Model Patent (patent number: ZL 2023 2 2581247.4). This device includes a connecting tube, a specimen collection structure, a blood suction structure, a multifunctional pressure measurement device with laser emission structure, a pressure measurement conversion structure, and an efficient vascular access blood collection device. By optimizing the blood collection procedure and simplifying the manometry process, this design reduces the risk of bloodstream infection for patients and minimizes occupational exposure for medical staff. The device ensures accurate zero point adjustment of pressure measurements while guaranteeing the authenticity and reliability of collected data. Additionally, it supports synchronous monitoring of ABP and CVP, thereby saving medical consumables and reducing workload for healthcare professionals. This simple yet safe and efficient device meets clinical requirements effectively and is highly recommended for widespread use.

[Key words] Vascular access; Blood collection device; Multifunctional arterial pressure device; Central venous pressure; Design; Application

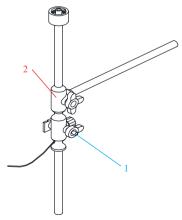
Fund program: National Utility Model Patent (ZL 2023 2 2581247.4); Tianjin Municipal Education Commission Scientific Research Plan Project (2023YBGX03)

DOI: 10.3969/j.issn.1008-9691.2025.02.018


有创动脉血压(arterial blood pressure, ABP)监测是测量血压的"金标准"。危重症患者常需要进行动态血压监测及血液标本采集,这对指导患者的临床治疗和判断疗效有重要意义。不准确的指标监测及不恰当的标本采集可能影响治疗效果[1]。

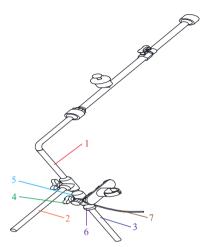
动脉导管采血技术是指在患者留置的动脉导管上进行取血,用于各种临床指标的实验室检测^[2-3]。目前临床常用的经动脉导管采血的操作存在一定的局限性^[4],如在动脉导管上连接三通进行取血,但此种方法易造成连接处残留血渍,增加了患者血流感染及护士职业暴露的风险^[5-6]。在进

行 ABP 监测时,测量零点的校准对于血压数值的准确性有非常重要的意义。目前在临床操作中,通常用水平尺将压力传感器的零点位置调整至与患者腋中线对齐,随后进行调零操作,此方法不方便操作且可能存在测量误差^[7]。此外,危重症患者往往需要同时监测 ABP 和中心静脉压(central venous pressure, CVP),现有单个测压装置功能局限,多个装置并行使用会增加医疗成本。因此,天津医科大学总医院重症医学科科研团队特设计了一种用于危重症患者抢救的血管通路便捷式采血装置和多功能测压装置,并获得了国家实用新型专利(专利号: ZL 2023 2 2581247.4)^[8]。该装置在降低血管通路采血相关血流感染发生率和医护人员血源性病原体职业暴露风险的同时,可保证监测指标测量的准确性,减轻了临床医护人员的工作量,减少了患者耗材使用,从而降低了患者治疗成本,且操作简便,现介绍如下。


1 血管通路便捷式采血装置和多功能动脉压测量装置的基本结构

1.1 血管通路便捷式采血装置的结构(图 1~2):包括连接管(图 1-1)和标本采集结构[肝素帽(图 1-2)、血标本采集口(图 1-3)、控制阀(图 1-4)、控制旋钮(图 1-5)],以及血液抽吸结构[储血槽(图 1-6)、抽吸活塞(图 1-7)、活塞杆(图 1-8)、封闭外套(图 1-9)]3部分组成,其中连接管前、后端分别有螺旋口[内螺旋接口(图 1-10)和外螺旋接口(图 1-11)],所述连接管上设有标本采集结构(肝素帽和控制阀)和带有适配硅胶外套的密闭血液抽吸结构(储血槽、设置在储血槽中的抽吸活塞及带动抽吸活塞移动的活塞杆)组成。

注:1为连接管,2为肝素帽,3为血标本采集口,4为控制阀,5为控制旋钮,6为储血槽,7为抽吸活塞,8为活塞杆,9为 封闭软硅胶外套,10为内螺旋接口,11为外螺旋接口

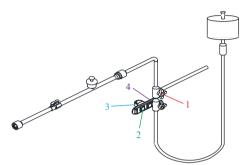

图 1 血管通路便捷式采血装置透视图

注:1为激光发射结构,2为测压转换结构

图 2 测压转换结构示意图

1.2 多功能测压装置的结构(图 2~3):由激光发射结构(图 2~1)、测压转换器结构(图 2~2)及血管通路便捷式采血装置共同组成,其中测压转换器结构设有转换旋钮及 3 个端口,分别与延长管(图 3~1)、中心静脉连接管(图 3~2)、液体连接管(图 3~3)相连,测压转换结构连接有启闭旋钮(图 3~4)的启闭阀(图 3~5)、液体滴速控制阀(图 3~6),启闭旋钮上有激光发射结构,启闭阀一侧设有压力传感线(图 3~7)。

注:1为延长管,2为中心静脉连接管,3为液体连接管,4为启闭 旋钮,5为启闭阀,6为液体滴速控制阀,7为压力传感线


图 3 多功能测压装置结构示意图

2 血管通路便捷式采血装置和多功能动脉压测量装置的使用方法

2.1 采血装置:连接管前后端分别有螺旋接口,其中内螺旋接口用于连接中心静脉导管或动脉导管,而外螺旋接口则连接测压转换装置。连接管上设有肝素帽、控制阀和血液抽吸结构。采血前,需利用血液抽吸结构将连接管内的液体及血液抽吸至储血槽内。采血时,关闭控制阀,此时将暴露出肝素帽上的采血口,同时可防止稀释的血液回流,从而确保样本质量。在采血口处消毒待干后,用采血针或血气针进行采血。采血结束后,开启控制阀,控制旋钮将遮挡住采血口,能防止污染的同时达到封堵采血口的目的,最后将储血槽内暂存血液经无菌通路推注至患者血管内,抽拉液体滴速控制阀进行管路冲洗,确保管路内无残留血液。

2.2 多功能测压装置(图 4):包括激光发射结构和测压转换器结构及血管通路采血装置。测压转换器结构上的三通阀有 3 个端口,可分别与延长管、中心静脉连接管、液体连接管相连。血管通路便捷式采血装置的内螺旋接口端与动脉导管相连,外螺旋接口端与延长管相连,进而与测压转换器结构相连,液体连接管连接输液袋,压力传感线与监护仪导线相连。在临床中,ABP需要持续监测,CVP不需要持续监测,当需要监测 CVP时,操作测压转换器结构上的转换旋钮(图 4-1)将与动脉导管相连的延长管所在端口关闭;当需要继续监测 ABP时,操作测压转换器结构上的转换旋钮将中心静脉导管所在端口关闭。液体连接管的近测压转换

结构部位连接装有激光发射结构启闭旋钮并安装在启闭阀上,用于测压零点调节启闭,激光发射选用的是激光笔,用于替代水平尺标定此处与腋中线对齐,避免目测或水平尺测量的误差,便于临床应用。滴速控制阀通过按压或抽拉可使连接管内的液体快速进入测压转换结构,启闭阀背向设有插接片(图 4-2)可与设有固定夹体(图 4-3)的插接板(图 4-4)适配,插接板上通过固定夹体固定在床体、输液杆等支撑物上并设有多个插接位,便于启闭阀通过插接片插装在插接位上,用于固定启闭阀的位置,继而限定整个测压装置的位置。

注:1为转换旋钮,2为插接片,3为固定夹体,4为插接板

图 4 多功能测压装置使用状态

3 血管通路便捷式采血装置和多功能 ABP 测量装置的优点

该实用新型专利的设计从问题出发,旨在提高临床工作效率,保证血标本留取的准确性,同时也增加了患者就医的安全性,减少医疗资源的浪费,为临床护理工作提供了安全保障。

- 3.1 安全准确采血:为了规范准确地采集动脉血液标本,在采血装置中应用了血液抽吸结构、控制阀及肝素帽的设计,构成了一套密闭系统。当进行动脉血采集时,先进行血液抽吸将连接管内的液体抽吸至储血槽中,再关闭控制阀,此时暴露出肝素帽取血口,在此消毒取血。控制阀的设计避免了血液抽吸装置储血槽内稀释的血液被采集,从而保证采集的动脉血准确,肝素帽的设计代替了以往使用的三通连接取血,使得取血过程更加方便,无血液残留在取血口,降低了血流感染和护士职业暴露风险。
- 3.2 优化测压调零:通过采用激光发射结构的设计,代替了传统使用水平尺进行测压零点的校准,使得压力监测调零的操作简单化,保证了测量数据的准确性,以正确指导临床医护人员治疗决策。
- 3.3 实现了ABP和CVP的同时监测:测压转换结构的设计,使得仅用一个传感器即可同时进行 ABP和 CVP的监测,节约了医疗耗材的使用,减轻了患者的医疗负担,同时也减少了医护人员的工作量。

4 讨论

在临床上,准确、动态监测血压对于危重症患者的救治有非常重要的意义^[9]。随着医疗技术的发展,临床上监测ABP能实时、动态发现患者病情的变化,同时监测 CVP可以在一定程度上反映患者心功能的变化情况^[10-11]。正确、及时采集危重症患者的血液标本进行实验室检测对于医疗决

策也十分重要。当需要抽取动脉血时可直接采集血标本进行血气分析和其他实验室检查,具有减少反复穿刺、减轻患者痛苦的优点^[10]。然而,目前临床上所应用的有创 ABP 监测装置及采血装置存在操作不便利、调零准确性欠佳等不足,还可能增加血流感染及职业暴露的风险,浪费医疗耗材和增加医疗费用及工作量等,进而增加临床治疗的安全隐患,降低医疗护理质量^[12]。

基于以上在临床实践中遇到的问题,本研究团队深入分析了现有装置的不足之处,并在此基础上进行了改进与创新,成功设计出血管通路便捷式采血装置和多功能 ABP 监测装置。该装置不仅安全有效,而且在设计上充分考虑到了临床使用的便捷性,易于操作。具体而言,该便捷式采血装置能极大地简化动脉血液标本的采集流程,减少患者的痛苦和医护人员的操作难度,同时确保血液标本的质量和采集效率。而 ABP 监测装置则集多种功能于一身,不仅能准确、实时地监测患者的 ABP 和 CVP,为临床评估提供关键数据支持,还能有效降低因频繁更换装置而导致交叉感染的风险,进一步提升了医疗护理质量和安全性。此外,该装置在实际应用中展现出了显著的优越性,极大地协助临床医护人员做出更加精准、及时的治疗决策,从而改善患者的治疗效果。该装置应用前景广阔,有望在更多医院和科室中推广及应用,为提升整体医疗服务水平做出贡献。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- [1] 孙盼盼,陈霞,朱纪荣,等.利用动脉测压管进行动脉采血的两种方法比较及分析[J]. 当代护士(中旬刊), 2021, 28 (1): 107-109. DOI: 10.19792/j.cnki.1006-6411.2021.02.040.
- [2] 金艳鸿,孙红,李春燕,等.《成人动脉血气分析临床操作实践标准(第二版)》解读[J].中国护理管理,2022,22 (11):1601-1606.DOI:10.3969/j.issn.1672-1756.2022.11.001.
- [3] 胥小芳, 孙红, 李春燕, 等.《动脉血气分析临床操作实践标准》要点解读 [J]. 中国护理管理, 2017, 17 (9): 1158-1161. DOI: 10.3969/j.issn.1672-1756.2017.09.002.
- [4] 王玥, 吴晓英, 袁翠, 等. 成人动脉血气分析临床操作实践 现况调查[J]. 中国护理管理, 2022, 22 (11): 1607-1611. DOI: 10.3969/j.issn.1672-1756.2022.11.002.
- [5] 曾妃,金静芬,高明榕,等.预设型动脉采血器与普通注射器采集动脉血标本的成本效益分析 [J]. 护理学杂志,2016,31 (16):52-55. DOI: 10.3870/j.issn.1001-4152.2016.16.052.
- [6] 张晓雪, 张芝颖, 王欣然.《动脉血气分析临床操作实践标准》 采血流程的临床应用研究[J]. 中国护理管理, 2019, 19 (11): 1711– 1715. DOI: 10.3969/j.issn.1672–1756.2019.11.024.
- [7] 周晶, 左祥荣, 刘少华, 等. 中心静脉压和有创动脉血压测量过程中校零和零点位置的探讨[J]. 中华危重病急救医学, 2023, 35 (3): 316-320. DOI: 10.3760/cma.j.cn121430-20220926-00862.
- [8] 刘海迎,李欣,王丹华,等.一种血管通路便捷式采血装置、 多功能测压装置:中国,CN202322581247.4 [P]. 2024-09-10.
- [9] Hernandez G, Messina A, Kattan E. Invasive arterial pressure monitoring: much more than mean arterial pressure [J]. Intensive Care Med, 2022, 48 (10): 1495–1497. DOI: 10.1007/s00134-022-06798-8.
- [10] 蒋渊屏. ICU 有创血压监测护理新进展[J]. 中外医疗, 2020, 39 (25): 196–198. DOI: 10.16662/j.cnki.1674–0742.2020.25.196.
- [11] 徐婷婷, 吕剑虹, 王祝平, 等. 上海市护理学会《有创动脉血 压监测方法》团体标准解读 [J]. 上海护理, 2024, 24 (5): 1-5. DOI: 10.3969/j.issn.1009-8399.2024.05.001.
- [12] 马云武, 白祥慧, 李微微, 等. 有创动脉血压监测准确性影响 因素的研究进展 [J]. 全科护理, 2022, 20 (22): 3085-3087. DOI: 10.12104/j.issn.1674-4748.2022.22.015.

(收稿日期:2024-12-09) (责任编辑:邸美仙)