· 论著·

结合心率的改良呼吸频率氧合指数在经鼻高流量 氧疗患者早期预测中的临床价值

毛越 杨书英

天津市第一中心医院重症医学科,天津 300192 通信作者:杨书英, Email; winterm2002@foxmail.com

【摘要】 目的 探讨结合心率的改良呼吸频率氧合(ROX-HR)指数在患者接受经鼻高流量氧疗(HFNC) 中的临床意义,同时比较 ROX-HR 指数与 ROX 指数早期预测 HFNC 结果的价值。方法 选择天津市第 一中心医院重症医学科 2022 年 1 月至 2023 年 6 月收治的进行连续 HFNC 的患者作为研究对象。153 例 患者被纳入研究分析。103 例(67.3%)患者因急性呼吸衰竭接受 HFNC, 50 例患者(32.7%)在拔除气管插管后 开始 HFNC。根据 HFNC 是否成功将患者分为 HFNC 成功组和 HFNC 失败组。记录 HFNC 启动前及 HFNC 启 动后 1、2、4、6、8、10、12、18、24 和 48 h 的 HR 和 ROX 指数,并计算 ROX-HR 指数。绘制受试者工作特征曲 线(ROC 曲线), 计算 ROC 曲线下面积(AUC), 评价 ROX-HR 指数及 ROX 指数对急性呼吸衰竭和拔除气管插 管后接受 HFNC 患者 HFNC 成功和失败的预测效能。结果 因急性呼吸衰竭接受 HFNC 的患者中, HFNC 失 败和较高的急性生理学与慢性健康状况评分Ⅱ(APACHEⅡ),序贯器官衰竭评分(SOFA)有关,HFNC失败组 APACHE II 和 SOFA 评分均明显高于 HFNC 成功组[APACHE II 评分(分): 19.86(14.26, 27.41)比 16.24(13.60, 22.69), SOFA 评分(分):5(4,6)比4(3,5),均P<0.05]。在拔除气管插管后开始HFNC的患者中,免疫功能 低下是 HFNC 失败的重要因素, HFNC 失败组免疫功能低下患者比例明显高于 HFNC 成功组〔77.8%(14/18) 比 31.3%(1032), P<0.05]。对于开始使用 HFNC 的急性呼吸衰竭患者, ROX-HR 指数在所有时间点均能较好 地评估 HFNC 成功与失败(AUC>0.650)。对于拔管后开始 HFNC 的患者, HFNC 失败患者的 ROX-HR 指数始 终较低。然而,与 ROX-HR 指数不同, ROX 指数似乎无法很好地区分 HFNC 成功与失败,拔管后 2、4、8、18、 48 h HFNC 成功组与失败组差异无统计学意义。在拔管后开始 HFNC 的患者中,仅凭 HR 即可预测 HFNC 结局, 2 h、4 h 的 AUC 和 95% 可信区间(95%CI)分别为 0.695(0.530~0.860)和 0.698(0.527~0.868), P 值分别为 0.041 和 0.038。结论 ROX-HR 指数是早期识别高 HFNC 失败风险患者有前景的工具。

【关键词】 结合心率的改良呼吸频率氧合指数; 呼吸频率氧合指数; 心率; 经鼻高流量氧疗; 预测价值

基金项目: 国家临床重点专科建设项目(2011-873); 天津市医学重点学科(专科)建设项目(TJYXZDXK-013A)

临床试验注册:中国临床试验注册中心, ChiCTR 2300071692

DOI: 10.3969/j.issn.1008-9691.2025.02.007

The clinical value of the modified respiratory rate-oxygenation index incorporating heart rate in the early prediction of patients undergoing high flow nasal cannula therapy

Mao Yue, Yang Shuying

Department of Intensive Care Unit, Tianjin First Central Hospital, Tianjin 300192, China

Corresponding author: Yang Shuying, Email: winterm2002@foxmail.com

[Abstract] Objective To investigate the clinical significance of the modified respiratory rate-oxygenation (ROX) index incorporating heart rate (HR) in patients undergoing high flow nasal cannula (HFNC) therapy, and to compare the value of ROX-HR and ROX indices in early prediction of HFNC outcomes. Methods Patients who received continuous HFNC therapy in department of intensive care unit of Tianjin First Central Hospital from January 2022 to June 2023 were selected as study subjects. A total of 153 patients were included in the analysis. Of these, 103 patients (67.3%) received HFNC due to acute respiratory failure, while 50 patients (32.7%) started HFNC after extubation. Patients were divided into HFNC success and HFNC failure groups based on the success of HFNC therapy. HR and ROX indices were recorded before HFNC initiation and at 1, 2, 4, 6, 8, 10, 12, 18, 24, and 48 hours after HFNC initiation, and the ROX-HR index was calculated. Plot the receiver operator characteristic curve (ROC curve), and calculate area under the curve (AUC) to evaluate the predictive value of ROX-HR and ROX index for success and failure of HFNC in patients with acute respiratory failure receiving HFNC treatment after extubation. Results Among patients with acute respiratory failure undergoing HFNC, HFNC failure was associated with higher acute physiology and chronic health evaluation [I (APACHE II) and sequential organ failure assessment (SOFA) scores [APACHE II score:

19.86 (14.26, 27.41) vs. 16.24 (13.60, 22.69), SOFA score: 5 (4, 6) vs. 4 (3, 5), both P < 0.05]. Among patients who started HFNC after extubation, immunocompromised status was a significant factor associated with HFNC failure, with a higher proportion of immunocompromised patients in the HFNC failure group compared to the HFNC success group [77.8% (14/18) vs. 31.3% (10/32), P < 0.05]. For patients with acute respiratory failure starting HFNC, the ROX-HR index could effectively distinguish HFNC success from failure at all time points (AUC > 0.650). For patients who started HFNC after extubation, the ROX-HR index remained lower in the HFNC failure group. However, unlike the ROX-HR index, the ROX index seemed unable to effectively differentiate HFNC success from failure, with no significant statistical differences between the HFNC success and failure groups at 2, 4, 8, 18, and 48 hours after extubation. In patients who started HFNC after extubation, HR alone could predict HFNC outcomes, with AUC and 95% confidence intervals (95%*CI*) of 0.695 (0.530–0.860) and 0.698 (0.527–0.868) at 2 hours and 4 hours, respectively, and P values of 0.041 and 0.038, respectively. **Conclusion** The ROX-HR index is a promising tool for early identification of patients at high risk of HFNC failure.

(Key words) Modified respiratory rate-oxygenation index incorporating heart rate; Respiratory rate-oxygenation index; Heart rate; High flow nasal cannula; Prediction

Fund program: National Key Clinical Specialty Construction Project (2011–873); Tianjin City Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-013A)

Clinical Trial Registration: Chinese Clinical Trial Registry, ChiCTR 2300071692

DOI: 10.3969/j.issn.1008-9691.2025.02.007

近年来,经鼻高流量氧疗(high flow nasal cannula, HFNC)应用于急性呼吸衰竭逐渐得到普 及,有证据表明, HFNC 可减少气管插管率,并可能 降低病死率^[1-2],可替代无创机械通气(non-invasive mechanical ventilation, NIV)或传统的氧疗方法,改 善患者舒适度及氧合,在呼吸衰竭时可减少呼吸 作功^[3-6]。计划内拔管后, HFNC 也可用于降低呼 吸衰竭的发生率[7-11]。随着 HFNC 应用的日益普 及, HFNC 失败的早期预测就显得至关重要,因为 延迟气管插管会增加患者病死率[12-14]。被确定为 HFNC 失败高风险的患者应密切监测或考虑尽早气 管插管,这可能会改善患者的预后。呼吸频率氧合 (respiratory rate-oxygenation, ROX)指数为脉搏血氧 饱和度(pulse oxygen saturation, SpO2)与吸入氧浓 度(fraction of inspiration oxygen, FiO₂)的比值除以 呼吸频率(respiratory rate, RR)的值。已有研究显 示, ROX 指数能以无创方式测量, 容易获得, 可以预 测肺炎和急性呼吸衰竭患者 HFNC 能否成功[15-17], 但ROX指数在因肺炎以外其他原因导致呼吸衰竭 的患者中或在计划拔管后开始 HFNC 患者中是否 有价值尚不明确;此外,是否可以通过纳入其他生 命体征参数来进一步提高 ROX 指数的诊断准确性 亦尚未明确。有研究者发现,在HFNC治疗1h后 记录的心动过速与 HFNC 失败有关[18]。心率 (heart rate, HR) 是临床上通常测量的生命体征,推测将其 纳入 ROX 指数可以提高该指数的诊断准确性。本 研究探讨结合 HR 的 ROX(ROX-HR)在患者接受 HFNC 中的临床意义,并比较 ROX-HR 和 ROX 指 数在早期预测 HFNC 结果时价值的差异。

1 资料和方法

- **1.1** 一般资料:采用前瞻性随机对照研究方法,选择本院重症医学科 2022 年 1 月至 2023 年 6 月收治的进行连续 HFNC 治疗的患者作为研究对象。
- 1.1.1 入选标准:① 符合使用 HFNC 标准的患者,包括急性呼吸衰竭〔定义为呼吸频率>25 次 /min且 氧合指数(PaO₂/FiO₂)<300 mmHg(1 mmHg≈0.133 kPa),氧气流量≥10 L/min〕;② 在计划性拔除气管插管开始 HFNC 作为预防性治疗者;③ 拔管前,所有患者必须成功通过自主呼吸试验满足临床脱机标准。
- 1.1.2 排除标准:① 因支气管镜手术而开始使用 HFNC 者;② 在 HFNC 失败后开始无创辅助通气 及拒绝气管插管者;③ 有高碳酸血症〔动脉血二氧 化碳分压(arterial partial pressure of carbon dioxide, $PaCO_2$) > 45 mmHg〕者;④ 继发于哮喘的急性呼吸衰竭者;⑤ 存在慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD) 加重或心源性 肺水肿者;⑥ 需要血管加压药支持的血流动力学不稳定者;⑦ 格拉斯哥昏迷评分(Glasgow coma scale, GCS) ≤ 12 分;⑧ 近期有鼻、面部或鼻腔手术者。
- 1.1.3 伦理学:本研究符合医学伦理学标准,经本院 医学伦理委员会批准(审批号:2023DZX38),所有检 查及治疗已取得患者及家属的知情同意,并在中国临 床试验注册中心注册(注册号:ChiCTR 2300071692)。 1.2 研究分组:153 例患者被纳入研究分析。因急
- 1.2 研究分组:153 例患者被纳入研究分析。因急性呼吸衰竭103 例(67.3%)患者接受 HFNC,50 例患者(32.7%)在拔除气管插管后开始 HFNC。根据HFNC 是否成功将患者分为 HFNC 成功组和 HFNC

失败组。

- 1.3 治疗方法: HFNC 使用新西兰 Fisher&Paykel Healthcare 公司生产的 HFNC 系统 AIRVO2型。HFNC 开始时的最小初始流量为 40 L/min。如需要,流量可增加至 60 L/min,或适当调整 FiO_2 ,目标为 $SpO_2 \ge 0.92$ 。HFNC 的停用指征(气管插管和机械通气的开始是基于方案建议的指导下由医生来判断):①存在持续或恶化的呼吸窘迫;②呼吸频率> 40 次 /min;③ $SpO_2 < 0.90$;④ 吸氧流量和 FiO_2 即使达到最大,但 5 min 内发生酸中毒,pH 值 < 7.35;⑤ 血流动力学显著不稳定(收缩压 < 90 mmHg,平均动脉压 < 65 mmHg 或需要应用升压药);⑥ 神经系统状况恶化(GCS < 12 分);⑦ 无法清除口鼻分泌物。
- 1.4 资料收集:①一般资料:包括性别、年龄、免 疫系统受损、急性生理学与慢性健康状况评分Ⅱ (acute physiology and chronic health evaluation II, APACHEⅡ)评分、序贯器官衰竭评分(sequential organ failure assessment, SOFA)评分、拨管前机械通 气时间、PaO2/FiO2、PaCO2、HFNC 持续时间、院内 病死率、重症监护病房(intensive care unit, ICU)病 死率[19-20]。如果患者有以下一种或多种疾病,则被 视为免疫系统受损:患有血液病或实体器官恶性肿 瘤,骨髓或实体器官移植术后,人类免疫缺陷病毒 (human immunodeficiency virus, HIV) 感染, 肝硬化 伴门静脉高压症或接受长期免疫抑制治疗。随访患 者直至院内死亡或出院。② HFNC 启动前及启动后 1、2、4、6、8、10、12、18、24 和 48 h 的 HR 和 ROX 指数。HFNC 成功是指 HFNC 解除,病情允许改为 鼻导管吸氧或不吸氧;而 HFNC 失败是指需行气管 插管和机械通气。HFNC 持续时间为从 HFNC 启动 到成功解除或失败的时间。
- **1.5** 统计学方法:使用 SPSS 21.0 统计软件分析数据。连续变量均不符合正态分布,以中位数(四分位数)[$M(Q_L, Q_U)$]表示,采用 Mann-Whitney U检验;分类变量以例(率)表示,采用 χ^2 检验。绘制 受试者工作特征曲线(receiver operator characteristic

curve, ROC 曲线), 并计算 ROC 曲线下面积(area under the curve, AUC)评估不同时间点 ROX和 ROX-HR 指数将患者分类为 HFNC 成功或失败的预测效能(AUC>0.650 说明预测效能良好)。 P<0.05 为差异有统计学意义。

2 结 果

- 2.1 HFNC 是否成功两组急性呼吸衰竭患者基线 特征和结局比较(表1):153 例患者纳入研究,排 除 26 例, 6 例接受 HFNC 支气管镜检查, 8 例改用 NIV治疗,2例因鼻出血终止HFNC,2例因手术终 止 HFNC, 8 例拒绝气管插管。免疫系统受损患者 占 57.5%(88 例)。103 例(67.3%)因急性呼吸衰竭 患者接受 HFNC。在开始 HFNC 时,中位 PaO₂/FiO₂ 为 102(89, 124) mmHg(1 mmHg≈0.133 kPa), 而 SOFA 评分为 4(3,5)分。47 例(45.6%)患者在开 始 HFNC 后 中 位 数 18.94(14.27, 25.21) h 需 要 行 气管插管(HFNC 失败)。HFNC 成功与失败两组急 性呼吸衰竭患者性别、年龄、免疫系统受损比例、 PaO₂/FiO₂、PaCO₂、HFNC 持续时间比较差异均无统 计学意义(均 P>0.05)。HFNC 失败与较高的 SOFA 和 APACHE II 评分(记录为 HFNC 启动前 24 h 内的 最高评分)有关, HFNC 失败组 APACHE II、SOFA 评分均明显高于 HFNC 成功组(均 P < 0.05)。
- 2.2 拔管后开始 HFNC 成功与失败两组患者基线特征比较(表 2): 50 例患者(32.7%) 在拔管后开始 HFNC。HFNC 开始后有 18 例(36.0%) 患者需要再次插管。拔管后开始 HFNC 成功与失败两组性别、年龄、APACHE \blacksquare 评分、SOFA 评分、拔管前机械通气时间、PaO₂/FiO₂、PaCO₂、HFNC 持续时间比较差异均无统计学意义(均P>0.05)。免疫系统受损是 HFNC 失败的重要因素,HFNC 失败组免疫系统受损患者比例较 HFNC 成功组明显升高(P<0.05)。
- 2.3 急性呼吸衰竭患者接受 HFNC 治疗期间不同时间点 ROX 和 ROX-HR 指数比较(表 3): 在急性呼吸衰竭接受 HFNC 的患者中, HFNC 失败组各时间点 ROX 指数和 ROX-HR 指数均较 HFNC 成功组明显降低,但 HFNC 失败组 HFNC 1、2、4、10 和 12 h

表 1 HFNC 成功与失败两组急性呼吸衰竭患者的基线特征和结局比较									
4대 단대	例数	男性	年龄[岁,	免疫系统受损	APACHE II 评分	SOFA 评分[分,	PaO ₂ /FiO ₂ [mmHg,	PaCO ₂ [mmHg,	HFNC 持续时间
组别	(例)	[例(%)]	$M(Q_{\rm L},Q_{\rm U})$	[例(%)]	$[分, M(Q_{\mathrm{L}}, Q_{\mathrm{U}})]$	$M(Q_{\rm L},Q_{\rm U})$	$M(Q_{\rm L},Q_{\rm U})$	$M(Q_{\rm L},Q_{\rm U})$	$[h, M(Q_L, Q_U)]$
HFNC 成功组	56	37 (66.1)	67(55,73)	36 (64.3)	16.24(13.60, 22.69)	4(3,5)	93 (77, 123)	37(32,41)	43.32 (31.06, 57.22)
HFNC 失败组	47	21 (44.7) a	65 (53, 71)	28 (59.6)	19.86 (14.26, 27.41) ^a	$5(4,6)^{a}$	93 (78, 123)	35(31,38)	18.94 (14.27, 25.21)

HR 均较 HFNC 成功组明显升高,差异均有统计学 意义(均 P < 0.05)。

2.4 计划拔管后开始 HFNC 期间不同时间点 ROX 和 ROX-HR 指数比较(表 4): 在拔管后开始 HFNC 的患者中,随时间延长, HFNC 失败组 ROX-HR 均

较 HFNC 成功组明显降低(均 P<0.05), 而 HFNC 成功组和失败组在 HFNC 2、4、8 和 18 h ROX 指数比较差异无统计学意义(均 P>0.05)。在 HFNC 2 h 和 4 h 仅凭 HR 即可预测 HFNC 结局, AUC 和 95% 可信区间(95% confidence interval, 95%CI)分

别为 0.695(0.530 ~ 0.860)和 0.698 (0.527 ~ 0.868), P 值分别为 0.041、0.038。

2.5 拔管后开始 HFNC 患者成功与失败两组患者的结果比较(表 2):拔管后开始 HFNC 成功组院内病死率和 ICU 病死率均较 HFNC 失败组明显降低(均 P<0.05)。

表 2 按官后开始 HFNU 成功与大败网组忠有的基线特征和结局比较	表 2	拔管后开始 HFNC 成功与失败两组患者的基线特征和结局比较
------------------------------------	-----	--------------------------------

组别	例数	男性	年龄[岁,	免疫系统受损	APACHE II 评分:	SOFA 评分[分,	拔管前机械通气
组別	(例)[[例(%)]	$M(Q_{\rm L},Q_{\rm U})$	[例(%)]	$(分, M(Q_{L}, Q_{U}))$	$M(Q_{\rm L},Q_{\rm U})$	时间[$h, M(Q_L, Q_U)$]
HFNC 成功组	32	18 (56.3)	57(54,75)	10(31.3)	15(12, 17)	5(3,8)	95 (58, 193)
HFNC 失败组	18	8(44.4)	54(52,66)	14 (77.8) ^a	17(12, 19)	4(3,6)	173 (94, 194)
组别	例数	₹ PaO ₂ /F	iO ₂ [mmHg,	PaCO ₂ [mmHg	, HFNC 持续印	村间 院内病	死率 ICU 病死率
组加	(例) M($(Q_{\mathrm{L}},Q_{\mathrm{U}})$	$M(Q_{\rm L},Q_{\rm U})$	$[h, M(Q_L, Q_L)]$	(%(例	刊)] [%(例)]
HFNC 成功组	. 32	166	(156, 186)	40(35,44)	29.0 (23.5, 4	9.1) 21.9(7) 15.6(5)
HFNC 失败组	. 18	158	(132, 176)	40(38,44)	45.9 (10.2, 8	3.1) 61.1(1	1) ^a 55.6(10) ^a

注:与HFNC成功组比较, ^aP<0.05;1 mmHg≈0.133 kPa

表	3 急性呼吸	衰竭患者接受 HFNC	期间不同时	间点的变量和诊断准	确性(针对	HFNC 结!	果)
-E II	Н	FNC 成功组	HFNC 失败组		- H-		
项目	例数(例)	数值[$M(Q_{L},Q_{U})$]		数值[M(Q _L , Q _U)]	P 值	AUC	95%CI
ROX 指数							
HFNC 开始前	56	3.69(3.40, 4.90)	47	3.50(3.08, 4.65)	0.061	0.607	$0.497 \sim 0.718$
HFNC 1 h	56	4.69(4.23, 7.22)	46	4.55(2.56, 5.80)	0.016	0.639	$0.528 \sim 0.750$
HFNC 2 h	56	4.72 (4.28, 6.24)	46	3.51(2.63, 5.30)	< 0.001	0.752	0.653 ~ 0.851
HFNC 4 h	53	6.24(4.87, 8.72)	41	5.12(4.24, 6.92)	0.001	0.700	0.592 ~ 0.809
HFNC 6 h	51	7.24(6.75, 8.90)	35	5.43 (4.67, 7.48)	< 0.001	0.792	0.685 ~ 0.899
HFNC 8 h	50	7.21 (5.46, 10.24)	33	6.32(4.72, 7.66)	0.001	0.727	0.613 ~ 0.841
HFNC 10 h	49	8.04(5.97, 9.14)	29	5.57(4.40, 7.49)	< 0.001	0.811	0.714 ~ 0.908
HFNC 12 h	48	8.11 (7.68, 10.26)	28	5.37(4.96, 7.93)	< 0.001	0.852	0.757 ~ 0.946
HFNC 18 h	43	7.85 (6.48, 9.73)	21	6.32(4.56, 7.48)	0.001	0.762	0.636 ~ 0.887
HFNC 24 h	36	8.51 (8.30, 10.32)	12	5.12 (4.94, 7.44)	< 0.001	0.884	0.751 ~ 1.000
HFNC 48 h	24	8.26(8.07, 9.03)	9	5.56(5.53, 6.77)	< 0.001	0.963	0.903 ~ 1.000
HR (次/min)							
HFNC 开始前	56	96(78, 109)	47	97(88,110)	0.053	0.611	$0.500 \sim 0.722$
HFNC 1 h	56	90(77,100)	46	101 (87, 113)	< 0.001	0.716	0.618 ~ 0.815
HFNC 2 h	56	91 (78, 104)	46	94(89, 116)	0.006	0.659	0.552 ~ 0.766
HFNC 4 h	53	89(76, 99)	41	95(83,111)	0.007	0.664	0.553 ~ 0.774
HFNC 6 h	51	88(75, 98)	35	93 (75, 106)	0.520	0.541	0.414 ~ 0.668
HFNC 8 h	50	88(73, 98)	33	89 (79, 106)	0.111	0.604	$0.480 \sim 0.727$
HFNC 10 h	49	85(72, 99)	29	99(81, 109)	0.003	0.705	$0.590 \sim 0.821$
HFNC 12 h	48	85(71, 94)	28	98(78, 115)	< 0.001	0.746	0.630 ~ 0.861
HFNC 18 h	43	88 (74, 100)	21	96(73, 116)	0.657	0.534	0.359 ~ 0.710
HFNC 24 h	36	88 (77, 100)	12	102(77, 113)	0.133	0.646	0.427 ~ 0.865
HFNC 48 h	24	82(71, 98)	9	97 (78, 116)	0.105	0.685	0.480 ~ 0.890
ROX-HR 指数							
HFNC 开始前	56	4.67 (3.65, 6.70)	47	4.27 (3.31, 6.26)	0.114	0.591	$0.480 \sim 0.701$
HFNC 1 h	56	6.03 (4.65, 8.44)	46	4.54(3.40, 6.70)	< 0.001	0.738	0.640 ~ 0.836
HFNC 2 h	56	7.22 (5.90, 10.63)	46	5.24(4.30, 7.27)	< 0.001	0.788	$0.701 \sim 0.875$
HFNC 4 h	53	6.84 (5.52, 11.32)	41	5.86(4.19, 8.02)	< 0.001	0.713	0.609 ~ 0.817
HFNC 6 h	51	7.78 (6.47, 11.31)	35	6.47 (4.54, 8.53)	0.001	0.710	0.598 ~ 0.822
HFNC 8 h	50	8.55 (6.09, 13.15)	33	7.15(5.03, 9.48)	0.010	0.668	0.549 ~ 0.787
HFNC 10 h	49	8.19 (6.98, 12.56)	29	6.31 (4.25, 8.37)	< 0.001	0.765	$0.653 \sim 0.878$
HFNC 12 h	48	10.29 (6.35, 14.56)	28	6.31 (3.76, 11.09)	0.001	0.728	0.609 ~ 0.848
HFNC 18 h	43	9.35 (7.75, 12.03)	21	6.05 (4.52, 11.45)	0.001	0.749	0.599 ~ 0.900
HFNC 24 h	36	9.84 (7.34, 13.92)	12	6.05(3.49, 8.03)	< 0.001	0.868	0.756 ~ 0.980
HFNC 48 h	24	11.58(7.07, 17.17)	9	5.27(4.70, 8.71)	0.001	0.875	0.739 ~ 1.000

	表 4 计	划拔管后开始 HFNC	期间不同时间	点的变量和诊断准确的	性(针对 HF	NC 结果)	
项目	HFNC 成功组		HFNC 失败组		n 店	AUC	0500 01
坝目	例数(例)	数值[M(Q _L , Q _U)]	例数(例)	数值[$M(Q_{L}, Q_{U})$]	P值	AUC	95%CI
ROX 指数							
HFNC 开始前	32	9.21 (7.07, 12.19)	18	10.03 (7.55, 12.07)	0.385	0.447	$0.275 \sim 0.620$
HFNC 1 h	30	8.28(6.75, 12.18)	15	6.48 (5.14, 9.02)	0.025	0.707	$0.533 \sim 0.880$
HFNC 2 h	28	8.30(7.44, 9.45)	14	7.03 (6.22, 9.63)	0.058	0.681	$0.492 \sim 0.871$
HFNC 4 h	28	8.48(6.77, 9.59)	14	7.28 (6.25, 8.38)	0.072	0.672	$0.508 \sim 0.837$
HFNC 6 h	27	8.83 (6.54, 11.84)	12	6.25 (5.74, 8.33)	0.039	0.707	$0.538 \sim 0.876$
HFNC 8 h	27	8.17(7.22, 11.87)	12	8.01 (5.73, 8.88)	0.084	0.694	$0.504 \sim 0.884$
HFNC 10 h	27	9.01 (7.64, 11.74)	12	6.42 (5.42, 8.46)	0.004	0.793	$0.637 \sim 0.950$
HFNC 12 h	26	8.25 (7.67, 10.97)	11	6.58 (5.03, 7.83)	< 0.001	0.874	$0.746 \sim 1.000$
HFNC 18 h	25	9.22 (7.66, 10.98)	10	7.87 (6.24, 10.19)	0.134	0.664	$0.454 \sim 0.874$
HFNC 24 h	19	8.21 (6.97, 10.64)	9	6.01 (5.17, 7.16)	0.006	0.825	$0.665 \sim 0.984$
HFNC 48 h	13	5.94(5.07, 11.84)	7	4.75 (3.86, 7.85)	0.122	0.714	0.443 ~ 0.986
HR(次/min)							
HFNC 开始前	32	90 (74, 103)	18	93 (82, 111)	0.137	0.628	0.468 ~ 0.788
HFNC 1 h	30	87 (76, 94)	15	94(76, 113)	0.300	0.596	0.392 ~ 0.799
HFNC 2 h	28	82 (70, 98)	14	90 (82, 108)	0.041	0.695	$0.530 \sim 0.860$
HFNC 4 h	28	83 (69, 97)	14	89 (80, 115)	0.038	0.698	$0.527 \sim 0.868$
HFNC 6 h	27	81 (74, 96)	12	87 (75, 103)	0.170	0.639	0.446 ~ 0.832
HFNC 8 h	27	84(71, 97)	12	89(81, 99)	0.075	0.681	0.506 ~ 0.855
HFNC 10 h	27	83 (69, 98)	12	84(80,108)	0.068	0.685	$0.500 \sim 0.871$
HFNC 12 h	26	78(72, 92)	11	95 (71, 120)	0.103	0.671	0.446 ~ 0.897
HFNC 18 h	25	78(69, 95)	10	89 (76, 110)	0.068	0.700	0.506 ~ 0.894
HFNC 24 h	19	79(73, 96)	9	80(75,112)	0.236	0.640	$0.408 \sim 0.873$
HFNC 48 h	13	73 (69, 114)	7	89 (71, 104)	0.475	0.599	$0.351 \sim 0.847$
ROX-HR 指数							
HFNC 开始前	32	10.91 (7.87, 15.93)	18	9.26(8.49, 15.18)	0.613	0.543	$0.382 \sim 0.705$
HFNC 1 h	30	9.31 (7.98, 13.08)	15	7.83 (5.93, 10.14)	0.034	0.696	$0.523 \sim 0.868$
HFNC 2 h	28	9.68 (8.84, 13.29)	14	8.83 (6.91, 10.24)	0.037	0.699	$0.530 \sim 0.868$
HFNC 4 h	28	9.35 (7.78, 12.29)	14	7.44(4.70, 10.17)	0.023	0.718	$0.543 \sim 0.894$
HFNC 6 h	27	10.13 (7.87, 14.54)	12	6.74(5.96, 10.77)	0.024	0.728	0.551 ~ 0.906
HFNC 8 h	27	10.51 (8.26, 14.84)	12	7.49 (5.56, 9.66)	0.008	0.769	$0.612 \sim 0.925$
HFNC 10 h	27	10.62 (8.93, 15.13)	12	7.23 (5.34, 9.74)	0.001	0.827	$0.679 \sim 0.975$
HFNC 12 h	26	12.12 (8.19, 14.62)	11	6.74(5.95, 7.63)	< 0.001	0.930	0.846 ~ 1.000
HFNC 18 h	25	11.08 (9.23, 14.70)	10	8.66(6.46, 10.40)	0.012	0.774	0.599 ~ 0.949
HFNC 24 h	19	9.92 (7.42, 13.39)	9	6.61 (5.64, 9.40)	0.011	0.801	$0.628 \sim 0.974$
HFNC 48 h	13	8.13 (5.79, 17.33)	7	4.18(3.16, 7.99)	0.036	0.791	0.586 ~ 0.996

3 讨论

本研究的结果表明,ROX-HR 指数是早期预测HFNC 结果的有效工具,它适用于急性呼吸衰竭及计划拔除气管插管后开始使用HFNC 作为预防性治疗的患者。ROX-HR 指数易于获得,可以无创方式测量,并且是能在床旁轻松应用的实用评估工具。对于开始使用HFNC 的急性呼吸衰竭患者,ROX-HR 指数在所有时间点均能较好地区分 HFNC 成功与失败(AUC>0.650)。对于拔管后开始 HFNC 的患者,HFNC 失败组患者的 ROX-HR 指数较 HFNC 成功组始终降低。但 ROX 指数无法很好地区分HFNC 成功与失败,拔管后行 HFNC 2、4、8、18、48 hHFNC 成功组与 HFNC 失败组 ROX 指数比较差异均无统计学意义。

因此,加入 HR 似乎提升了 ROX 指数的预测准确性。本研究中急性呼吸衰竭接受 HFNC 期间 HFNC 失败组患者 HFNC 2、4、10、12 h HR 均明显高于 HFNC 成功组。在计划拨管后开始 HFNC 的患者中,仅在 2 h 和 4 h 的 HR 即可达到合理的 AUC (分别为 0.695 和 0.698) 以预测 HFNC 的结果,提示心动过速(尤其是在 HFNC 开始后不久) 与治疗失败相关。Roca等[15]进行的多中心分析显示,早在 HFNC 治疗的 1 h 内还观察到 HFNC 失败与心动过速有关。HR 升高可能反映了交感神经驱动增强或心肺系统代偿失调,因此是预后较差的标志。本研究有部分患者是从气管插管拔管后开始行 HFNC,在这些患者中,心动过速的出现也可能反映心脏储备受损,是拔管后进展为呼吸衰竭的危险因素。

ROX-HR 指数提供了一种早期评估 HFNC 患者的方法。HFNC 失败的早期预测至关重要,因为大多数患者在 HFNC 启动后 24 h 内插管。此外,HFNC 延迟插管已经显示出与病死率增加相关。虽然需要在多中心研究中进行验证,但 ROX-HR 指数似乎是早期识别高 HFNC 失败风险患者有前途的工具。在计划拔管后开始 HFNC 的患者中,ROX-HR的预测价值良好。早期认识到需要重新气管插管,这与包括病死率在内的较差结果有关,是一项重要的临床需求。因此,ROX-HR 可能对拔管后的早期评估很有帮助。

免疫系统受损的患者占本研究人群的较大比例。多项研究表明, HFNC 可能与降低气管插管率有关^[21-22]。有研究表明,较低的氧合和较高的器官功能障碍(SOFA 评分)可作为免疫系统受损患者HFNC 失败的预测因素^[23]。但仍缺乏足够的证据来指导在免疫系统受损患者中使用 HFNC。本研究表明, ROX-HR 指数对免疫系统受损患者中的适用性得到了提升。

本研究的局限性在于,这是一项单中心研究,不包括手术或术后患者。在本研究中,也没有评估心房颤动的存在或 β 受体阻滞剂的使用。快速心房颤动的存在本身可能就是 HFNC 成功不良预后的标志。β 受体阻滞剂对 ROX-HR 指数的影响也尚不明确。此外,心动过缓会升高 ROX-HR 指数,如果与血流动力学不稳定相关,则会为医务人员提供错误的信息,这是应用 ROX-HR 指数时需要重点关注的因素。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- [1] Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure [J]. N Engl J Med, 2015, 372 (23): 2185–2196. DOI: 10.1056/NEJMoa1503326.
- [2] Ni YN, Luo J, Yu H, et al. Can high-flow nasal cannula reduce the rate of endotracheal intubation in adult patients with acute respiratory failure compared with conventional oxygen therapy and noninvasive positive pressure ventilation?: a systematic review and metaanalysis [J]. Chest, 2017, 151 (4): 764-775. DOI: 10.1016/ i.chest.2017.01.004.
- [3] Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure [J]. Am J Respir Crit Care Med, 2017, 195 (9): 1207–1215. DOI: 10.1164/rccm.201605–09160C.
- [4] Cuquemelle E, Pham T, Papon JF, et al. Heated and humidified high-flow oxygen therapy reduces discomfort during hypoxemic respiratory failure [J]. Respir Care, 2012, 57 (10): 1571–1577. DOI: 10.4187/respcare.01681.
- [5] Helviz Y, Einav S. A systematic review of the high-flow nasal cannula for adult patients [J]. Crit Care, 2018, 22 (1): 71. DOI: 10.1186/s13054-018-1990-4.
- [6] 王涛,徐前程,秦雪梅,等.高流量氧疗联合俯卧位治疗4例 重型新型冠状病毒肺炎患者的经验总结[J].中国中西医结合急

- 救杂志, 2020, 27 (2): 186–189. DOI: 10.3969/j.issn.1008–9691. 2020.02.013.
- [7] Hernández G, Vaquero C, González P, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial [J]. JAMA, 2016, 315 (13): 1354-1361. DOI: 10.1001/ jama.2016.2711.
- [8] Hernández G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients a randomized clinical trial [J]. JAMA, 2016, 316 (15): 1565-1574. DOI: 10.1001/jama.2016.14194.
- [9] Maggiore SM, Idone FA, Vaschetto R, et al. Nasal high-flow versus venturi mask oxygen therapy after extubation: effects on oxygenation, comfort, and clinical outcome [J]. Am J Respir Crit Care Med, 2014, 190 (3): 282–288. DOI: 10.1164/rccm.201402– 03640C.
- [10] Luo MS, Huang GJ, Wu L. High-flow nasal cannula oxygen therapy versus conventional oxygen therapy in patients after planned extubation [J]. Crit Care, 2019, 23 (1): 344. DOI: 10.1186/s13054-019-2606-3.
- [11] 赵慧颖, 罗建, 吕杰, 等. 外科 ICU 患者脱机后序贯经鼻高流量氧疗的特点及治疗失败的危险因素分析 [J]. 中华危重病急救医学, 2019, 31 (6): 689-693. DOI: 10.3760/cma.j.issn.2095-4352. 2019.06.006.
- [12] Kang BJ, Koh Y, Lim CM, et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality [J]. Intensive Care Med, 2015, 41 (4): 623-632. DOI: 10.1007/s00134-015-3693-5.
- [13] Azoulay E, Pickkers P, Soares M, et al. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study [J]. Intensive Care Med, 2017, 43 (12): 1808–1819. DOI: 10.1007/s00134-017-4947-1.
- [14] Kim WY, Sung H, Hong SB, et al. Predictors of high flow nasal cannula failure in immunocompromised patients with acute respiratory failure due to non-HIV pneumocystis pneumonia [J]. J Thorac Dis, 2017, 9 (9): 3013-3022. DOI: 10.21037/jtd.2017. 08 09
- [15] Roca O, Messika J, Caralt B, et al. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: the utility of the ROX index [J]. J Crit Care, 2016, 35: 200– 205. DOI: 10.1016/j.jcrc.2016.05.022.
- [16] Roca O, Caralt B, Messika J, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy [J]. Am J Respir Crit Care Med, 2019, 199 (11): 1368–1376. DOI: 10.1164/rccm.201803-0589OC.
- [17] 刘彦飞, 许程飞, 黄艳林. ROX 指数在经鼻高流量氧疗患者中的早期临床应用及预测 [J]. 中华危重病急救医学, 2023, 35 (8): 823-827. DOI: 10.3760/cma.j.cn121430-20221229-01127.
- [18] Frat JP, Ragot S, Coudroy R, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy [J]. Crit Care Med, 2018, 46 (2): 208–215. DOI: 10.1097/CCM.000000000002818.
- [19] Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system [J]. Crit Care Med, 1985, 13 (10): 818–829.
- [20] Vincent JL, Moreno R, Takala J, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/ failure [J]. Intensive Care Med, 1996, 22 (7): 707-710. DOI: 10.1007/BF01709751.
- [21] Coudroy R, Jamet A, Petua P, et al. High-flow nasal cannula oxygen therapy versus noninvasive ventilation in immunocompromised patients with acute respiratory failure: an observational cohort study [J]. Ann Intensive Care, 2016, 6 (1): 45. DOI: 10.1186/ s13613-016-0151-7.
- 22] Frat JP, Ragot S, Girault C, et al. Effect of noninvasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial [J]. Lancet Respir Med, 2016, 4 (8): 646-652. DOI: 10.1016/S2213-2600(16)30093-5.
- [23] Kang YS, Choi SM, Lee J, et al. Improved oxygenation 48 hours after high-flow nasal cannula oxygen therapy is associated with good outcome in immunocompromised patients with acute respiratory failure [J]. J Thorac Dis, 2018, 10 (12): 6606-6615. DOI: 10.21037/jtd.2018.10.110.

(收稿日期:2024-12-30) (责任编辑:邸美仙)