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[Abstract] Sepsis-acquired weakness (SAW) is a common complication in critically ill patients, yet significant
gaps remain in both mechanistic understanding and therapeutic interventions for this condition. SAW not only prolongs
the duration of mechanical ventilation and hospitalization but is also closely associated with inereased mortality. Even
if these SAW patients survive, they often experience long-term physical dysfunction after hospital discharge, leading
to diminished quality of life. Emerging evidence suggests that sustained mitochondrial dysfunction may constitute a
pivotal pathophysiological basis for the development and progression of SAW, primarily encompassing five key aspects:
dysregulated mitochondrial quality control (MtQC), impaired oxidative phosphorylation (OXPHOS), exacerbated oxidative
stress, disrupted Ca™" homeostasis, and their mediation of diverse myofiber injuries. This article systematically elucidates
the central role of mitochondrial dysfunction in the pathogenesis of SAW. Furthermore, we explore potential therapeutic
strategies targeting mitochondrial function, including mitigating mitochondrial oxidative stress, optimizing nutritional
support, and supplementing with muscle-derived mesenchymal stem cells. These insights provide a critical theoretical
framework for understanding SAW mechanisms and developing clinical interventions, with particular emphasis on the
translational value of mitochondrial-targeted therapies in improving outcomes for septic patients.
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28 SAW R FEUERE . BHeAh, L o B A Bt IR S B
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