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【摘要】 体外膜肺氧合（ECMO）在临床上主要用于为重症心肺功能衰竭患者提供持续的体外呼吸与循

环，以维持患者生命，是治疗难以控制的严重心力衰竭和呼吸衰竭的关键技术。随着 ECMO 用于循环和（或）

呼吸辅助临床经验的积累及生物医学工程技术的进步，应用更加便携、性能更加稳定的 ECMO 设备逐渐进入临

床，使越来越多的危重症患者从中获益。尽管 ECMO 技术已相对成熟，但 ECMO 辅助时机选择、突发并发症、患 

者生理指标监测预警等风险管理问题，极大影响了 ECMO 的救治效果。针对 ECMO 风险管理，本文梳理了传统

模式与人工智能技术在风险评估中的方法、最新成果及研究热点，并从多中心和前瞻性研究的推进、模型效能

的外部验证与标准化、长期预后的关注、创新技术的融合、增强模型的可解释性、经济成本效益分析 6 个方面展 

望其未来发展趋势，以期为后续研究人员构建模型、探索新的研究方向提供参考。
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【Abstract】 Extracorporeal membrane oxygenation (ECMO) is primarily used in clinical practice to provide 
continuous extracorporeal respiratory and circulatory support for patients with severe heart and lung failure, thereby 
sustaining life. It is a key technology for managing severe heart failure and respiratory failure that are difficult to control. 
With the accumulation of clinical experience in ECMO for circulatory and/or respiratory support, as well as advancements 
in biomedical engineering technology, more portable and stable ECMO devices have been introduced into clinical use, 
benefiting an increasing number of critically ill patients. Although ECMO technology has become relatively mature, the 
timing of ECMO initiation, management of sudden complications, and monitoring and early warning of physiological 
indicators are critical factors that greatly affect the therapeutic outcomes of ECMO. This article reviews traditional 
methods and artificial intelligence techniques used in risk assessment related to ECMO, including the latest achievements 
and research hotspots. Additionally, it discusses future trends in ECMO risk management, focusing on six key areas:  
multi-center and prospective studies, external validation and standardization of model performance, long-term prognosis 
considerations, integration of innovative technologies, enhancing model interpretability, and economic cost-effectiveness 
analysis. This provides a reference for future researchers to build models and explore new research directions.
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 体外膜肺氧合（extracorporeal membrane oxygenation， 

ECMO）是一种基于体外循环系统的高级持续体外

生命支持技术，是针对常规治疗无效的循环和（或）

呼吸衰竭的抢救性辅助治疗手段，其通过将患者的

静脉血液引流至体外循环回路，经过膜式氧合器对

血液进行氧合和二氧化碳清除，再将血液回输患者

体内，实现部分或近似全部的血气交换、血液循环

功能［1］。ECMO 能够快速改善危重症患者的低氧血

症和循环衰竭状态，可在相对时间内部分替代患者

的心肺功能，帮助危重症患者度过生命危险期，为后

续治疗争取更多的机会和时间［2］。近年来，该技术在

危重症救治领域发挥了重要作用。根据国际体外生

命支持组织（Extracorporeal Life Support Organization， 

ELSO）统计，2009 至 2022 年，全世界在 ELSO 登记的 

ECMO 病例数为 154 568 例［3］；2023 年，我国 814 家 

医院上报数据显示，开展ECMO救治达到 18 486例， 
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较2022年增加了37% ［4］。以上数据表明，基于ECMO 

的体外生命支持技术正处于快速发展阶段，ECMO

设备在全世界范围内的应用呈逐年增加趋势。然而，

ECMO 设备的应用也面临严重原发病、突发并发症

等诸多临床挑战［5］。一级预防是 ECMO 患者风险防 

控的核心，早期识别和预防风险因素是 ECMO 管理

的关键，也是患者成功撤机的前提。

 风险评估模型作为一种科学的统计学评估方

法，在早期筛查与识别 ECMO 患者高危人群方面具

有重要的临床价值。随着信息化时代的到来，海量临 

床数据与人工智能（artificial intelligence，AI）技术结

合开发的 ECMO 患者风险评估模型逐渐成为危重症

救治领域的关注热点。目前，ECMO 患者风险评估以 

量表为主，存在忽视个体差异、评估结果不一致、易

漏诊等问题。ECMO 患者风险评估研究在进行数据

分析时，主要采用传统的统计学方法构建风险评估

模型，存在计算效率低、难以处理复杂的非线性关

系、模型泛化能力有限等局限性。AI 技术凭借其卓

越的数据处理能力，为 ECMO 患者风险评估提供了

新视角［6］。现针对传统模式与 AI 技术在 ECMO 患

者风险评估中的方法与挑战进行回顾总结，并展望

其未来发展趋势，以期为后续 ECMO 患者风险评估

模型的构建、新的研究方向的探索提供参考。

1 风险评估模型

 风险评估模型是一种科学的统计学评估方法，

用于根据个体特征预测其在未来发生某种特定结局

事件的概率［7-8］。评估模型的构建有利于帮助医护

人员识别高风险个体，评估疾病严重程度及影响因

素，预测不良结局，并提前制订个体化的治疗和护理

方案，从而有效降低不良结局的发生风险。

 风险评估模型的构建遵循标准化的流程。首要

步骤是确定临床问题，不同的临床问题决定不同的

模型类型，若研究目标旨在识别当前疾病状态，则构

建诊断模型；若需预测未来临床结局，则建立预后模

型［9］。研究设计包括队列研究、病例对照研究、横断 

面研究等，现阶段研究者通常采用单中心回顾性队

列数据开发模型。模型通常纳入人口统计学特征、

基本病史、体格检测指标、实验室检查指标等［10］。

此外，评估模型研究需要纳入足够的数据集，这将决

定模型的准确性和可靠性。研究者应描述缺失数据、

异常数据、重复数据及处理方法，并对数据进行转

换，确保数据的质量和可用性［11］。在评估模型建立

过程中，特征选择是不可或缺的步骤，研究者通常纳 

入大量特征进行统计学分析。然而，纳入特征数量越 

多，模型过拟合的风险越大［12］。因此，在分析之前进

行合理的特征筛选具有重要意义。传统模式主要基

于临床经验和单变量分析筛选特征，而现代方法则

采用逐步回归、最小绝对收缩和选择算子（the least  

absolute shrinkage and selection operator，LASSO）回归

等算法进行自动特征选择，对于高维数据，还可应用 

基于机器学习的特征重要性评估方法，降低维度并

提高模型效能。在建模方法上，除传统的线性回归、

Logistic回归、Cox比例风险模型外，机器学习算法在 

复杂模式识别中展现出独特优势。模型验证是风险

评估模型研究中的关键环节，根据验证样本来源分

为内部验证和外部验证［13］。风险评估模型的效能可

从区分度、校准度及临床适用性 3 个方面进行评价。 

区分度旨在衡量预测模型在不同类别患者间的区分

能力，常见评价指标包括受试者工作特征曲线下面 

积（area under the receiver operator characteristic curve， 

AUC）、一致性指数（concordance index，CI）；校准度

旨在衡量模型的预测概率与实际事件发生频率的匹

配程度，常见方法包括校准曲线、Hosmer-Lemeshow

拟合优度检验、概率预测准确性评分（Brier 评分）；

而临床适用性旨在评估模型在实际临床决策中的应

用价值，常见方法包括决策曲线分析、净效益计算

及成本效益分析［14］。随着真实世界数据应用的深 

入，模型动态更新机制已成为当前研究的重点。与此 

同时，借助数学方程式、评分表、列线图、网页计算

器等可视化工具的开发，进一步增强了模型的临床

可用性和转化价值［15-16］。

2 ECMO 患者风险评估模型的研究现状

2.1 传统风险评估模型

2.1.1 常见的风险评估方法：ECMO 患者风险评估

对于识别危险因素、实施个体化干预及改善预后至 

关重要。近年来，多个研究团队开发出不同风险评估 

模型，为临床提供了有效工具，可优化治疗决策，从

而提高患者生存率。现有大多数模型是基于 Logistic 

回归、Cox 比例风险回归等传统统计学方法进行危

险因素筛选，具有较强的可解释性和临床应用价值。

目前基于传统统计学方法开发的风险评估方式包括

但不限于 ECMO 协作网络评分（ECMO collaborative  

network，ECMOnet）、预测接受静脉-静脉 ECMO 的严

重急性呼吸窘迫综合征患者死亡风险评分（predicting  

death for severe acute respiratory distress syndrome on  

veno-venous ECMO，PRESERVE）、呼吸ECMO生存预
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测评分（respiratory ECMO survival prediction，RESP）、 

静脉-动脉 ECMO 辅助后生存率评分（survival after  

veno-arterial ECMO，SAVE）、ECMO 治疗生存预测评

分（prediction of survival on ECMO therapy，PRESET）、 

预测静脉-动脉ECMO（veno-arterial ECMO，VA-ECMO） 

患者 30 d院内病死率评分ECMO-ACCEPTS等，这些 

评分系统广泛应用于因心源性休克、急性呼吸窘迫

综合征（acute respiratory distress syndrome，ARDS）等 

疾病接受 ECMO 治疗的患者。

2.1.2 传统模式在 ECMO 患者风险评估模型中应用 

的研究进展（表 1）：2012 年，意大利 Pappalardo 等［17］ 

提出了应用ECMOnet评分预测接受静脉-静脉ECMO 

（veno-venous ECMO，VV-ECMO）治疗的甲型流感病

毒（H1N1）感染致 ARDS 患者的死亡风险，该评分包

括 5 个危险因素，评分越高，死亡风险越大，被认为

是评估急性呼吸衰竭患者 VV-ECMO 介入最佳时机 

的有效工具。2013 年，法国 Schmidt 等［18］基于多元 

Logistic 回归，分析了 2008 年 5 月至 2012 年 1 月法

国 3 家成人重症监护病房（intensive care unit，ICU） 

中接受ECMO治疗的140例ARDS患者资料，构建了 

PRESERVE评分系统，用于预测接受VV-ECMO治疗 

的ARDS患者死亡风险，确定了与 ICU出院后 6个月 

死亡风险相关的 8 个因素。该评分可帮助医生评估 

患者是否适合VV-ECMO治疗，同时可以将患者根据 

死亡风险分层，有助于合理分配医疗资源和制定个

体化治疗计划。随后，Schmidt 等［19］在 2014 年开发

了 RESP 评分系统，该评分系统基于多元 Logistic 回

归纳入了 12 个 ECMO 启动前变量，结合 ELSO 注册 

数据库中2000至2012年接受ECMO治疗的2 355例 

患者资料，开发了严重急性呼吸衰竭患者死亡风险 

评估模型，并接受了外部验证，一定程度上增加了模

型可信度。2015 年，Schmidt 等［20］通过多元 Logistic 

回归，识别出与住院生存率独立相关的因素，针对接 

受 VA-ECMO 治疗的难治性心源性休克患者，开发

了 SAVE 评分系统，并成功预测了患者的死亡风险。 

2017 年，德国 Hilder 等［21］针对 2010 至 2015 年接受 

VV-ECMO 治疗的 108 例 ARDS 患者进行了回顾性

分析，证明了 ECMOnet 评分和 RESP 评分预测接受

ECMO治疗的ARDS患者死亡风险的可靠性；并通过 

多元 Logistic 回归纳入了新的变量，建立了 PRESET

评分，该评分系统对死亡风险的预测效能较以往评

分系统更佳，能更精准地预测 ARDS 患者死亡风险。 

2020年，德国Becher等 ［22］ 通过Cox比例风险回归筛 

选出 10 个独立预测因素，开发了 ECMO-ACCEPTS 

评分，用于评估接受VA-ECMO治疗的难治性心源性

休克患者的 30 d 院内病死率。该研究根据回归系数 

赋予各变量不同分值，并将风险模型评分进行分层：

≤18 分为低危组，19～32 分之间每 2 分为一个中间

风险组，≥33 分为高危组；随着评分增加，预测院内

病死率逐步上升（从 36.2% 至 85.4%），为 VA-ECMO 

患者院内死亡风险提供了量化工具。2023年，我国学 

者基于 Cox 比例风险回归筛选出接受 ECMO 治疗的 

成人患者 30 d 生存率影响因素，并建立了列线图模

型用于生存预测［23］。2025 年，王钊等 ［24］ 建立了基于 

LASSO 惩罚的 Logistic 回归模型，以预测接受 ECMO

治疗的成人 ARDS 患者生存情况，为临床决策提供 

了有效工具。此外，还有多种用于ECMO患者的危重 

症评分，包括但不限于序贯器官衰竭评分（sequential  

organ failure assessment，SOFA） ［25］、简化急性生理学评 

分Ⅱ（simplified acute physiology score Ⅱ，SAPSⅡ）［26］、 

急性生理学与慢性健康状况评分Ⅱ（acute physiology 

and chronic health evaluation Ⅱ，APACHEⅡ）［27］等。

2.1.3 存在的问题：长期以来，传统风险评估模型在

临床研究和实际应用中发挥着重要作用。这些模型

通过量化风险因素，帮助医生识别潜在患者。由于 

传统风险评估模型结构简明、计算方式直观，不仅

容易理解，还能够在变量较少、样本量较小的情况

下，提供稳定的预测结果。因此，传统风险评估模型 

在一定条件下展现出独特优势。然而，传统风险评估 

模型在面对复杂情况时，仍存在一些局限性。例如：

传统风险评估模型在捕捉患者风险的多重交互关系

和非线性影响方面表现不足，无法全面反映各个因

素之间的复杂交互机制。此外，传统风险评估模型

通常依赖人工选择变量，使得模型难以涵盖新兴生

物标志物、社会决定因素等多元化信息，限制了模

型的适应性和前瞻性。传统风险评估模型大多是静

态的，难以动态响应患者在治疗过程中发生的风险 

因素变化。在处理大规模数据集时，传统风险评估模 

型的计算效率和可扩展性也面临挑战，影响其预测

效能和实时应用能力。

 近年来，随着大数据和 AI 技术的快速发展，研

究人员开始探索更加复杂、精准的风险评估模型。

随机森林、支持向量机、神经网络等AI技术，凭借其

强大的数据处理能力和模型拟合能力，克服了传统

风险评估模型的局限性。因此，AI 技术在 ECMO 患

者风险评估中的应用，成为当前该领域的研究热点。 
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这些新兴技术有望推动 ECMO 患者风险评估进入到 

一个新阶段，为临床决策提供更加精准、更加个体

化的支持。

2.2 AI 风险评估模型

2.2.1 常见的 AI 技术：AI 是一种通过计算机程序

模拟人类思维过程、推理能力和行为表现的前沿技

术，包括机器学习和深度学习。根据处理数据类型和 

训练方式的不同，机器学习和深度学习可进一步分

为监督学习与无监督学习［28］。监督学习是指计算机

通过学习带有标签的数据集，根据已知的输入输出 

关系建立模型，对未知样本进行评估；无监督学习则

不依赖于标签信息，而侧重于从未标注的数据中挖

掘潜在的结构和模式，揭示数据之间的内在关系。因 

此，监督学习广泛应用于风险评估模型的构建，常见

的算法包括 K 最近邻、随机森林、支持向量机、神经

网络等［29］。对于 ECMO 患者的风险评估，大多数研

究者采用监督学习算法构建风险评估模型。

2.2.2 AI技术在ECMO患者风险评估模型中应用的

研究进展（表 2）：在患者预后评估方面，2020 年，美 

国Ayers等 ［30］ 运用AI技术分析了接受VA-ECMO治 

疗的成人患者实验室数据，构建了深度神经网络模

型用于生存预测，AUC（0.920）显著优于传统 SAVE

评分（0.650），凸显了 AI 技术在优化接受 VA-ECMO 

治疗患者临床决策过程中的巨大潜力。在 ECMO 治

疗期间，出血和血栓形成是主要并发症和死亡原因，

即便在受控环境下，出血事件也频繁发生。2018 年， 

法国一项关于 ECMO 救治严重 ARDS 肺损伤的试验

显示，近一半接受 ECMO 治疗的患者发生了出血，需

表 1 传统模式在 ECMO 患者风险评估中应用的研究概括

评分系统 / 模型 纳入指标 适用场景 模型性能

ECMOnet 评分［17］ ECMO 前住院时间、胆红素、Cr、HCT、MAP 预测接受 VV-ECMO 治疗的
　甲型流感病毒（H1N1）
　感染致 ARDS 患者
　死亡风险

内部验证 ：C 统计量为 0.857
　（95%CI 为 0.754～0.959）；
外部验证 ：C 统计量为 0.694
　（95%CI 为 0.562～0.826）

PRESERVE 评分［18］ 年龄、BMI、免疫功能受损状态、SOFA 评分、ECMO
　前机械通气时间、俯卧位通气、平台期压力、PEEP 

预测接受 VV-ECMO 治疗的
　ARDS 患者 6 个月死亡风险

C 统计量为 0.890（95%CI 为
　0.830～0.940）

RESP 评分［19］ 年龄、免疫功能受损状态、ECMO 前机械通气时间、
　急性呼吸诊断类别、中枢神经系统功能障碍、
　急性非肺部感染、ECMO 前神经肌肉阻滞剂使用、
　ECMO 前一氧化氮使用、ECMO 前 HCO3

- 输注、
　ECMO 前心搏骤停、PaCO2、吸气峰压

预测接受 ECMO 治疗的严重
　急性呼吸衰竭患者
　死亡风险

内部验证 ：C 统计量为 0.740
　（95%CI 为 0.720～0.760）；
外部验证 ：C 统计量为 0.920
　（95%CI 为 0.890～0.970）

SAVE 评分［20］ 年龄、体质量、ECMO 前机械通气时间、慢性肾衰竭、
　急性肾衰竭、肝衰竭、先天性心脏病、心肌炎、
　难治性室速 / 室颤、心脏或肺移植后状态、中枢
　神经系统功能障碍、ECMO 前 HCO3

- 输注、ECMO
　前心搏骤停、舒张压、脉压、吸气峰压

预测接受 VA-ECMO 治疗的
　难治性心源性休克患者
　死亡风险

内部验证 ：C 统计量为 0.680
　（95%CI 为 0.640～0.710），
　Hosmer-Lemeshow C 统计量为
　9.700（P＝0.290）；
外部验证 ：C 统计量为 0.900
　（95%CI 为 0.850～0.950），
　Hosmer-Lemeshow C 统计量为
　13.970（P＝0.080）

PRESET 评分［21］ ECMO 前 pH 值、ECMO 前 MAP、ECMO 前乳酸、
　ECMO 前血小板浓度、ECMO 前住院时间

预测接受 VV-ECMO 治疗的
　ARDS 患者死亡风险

内部验证 ：C 统计量为 0.845
　（95%CI 为 0.760～0.930）；
外部验证 ：C 统计量为 0.700
　（95%CI 为 0.560～0.840）

ECMO-ACCEPTS
　评分［22］

年龄、紧急入院、ECMO 前心肺复苏、心房颤动、
　冠状动脉疾病、充血性心力衰竭、肺动脉高压、
　高血压、心脏移植、急性冠脉综合征

预测接受 VA-ECMO 治疗的
　难治性心源性休克患者
　30 d 院内病死率

内部验证 ：C 统计量为 0.643
　（95%CI 为 0.626～0.660）；
外部验证 ：C 统计量为 0.640
　（95%CI 为 0.628～0.652）

成人 ECMO 患者 30 d
　生存预测列线图
　模型［23］

性别、APACHEⅡ评分、DIC 评分、去甲肾上腺素
　平均日剂量

预测接受 ECMO 治疗的成人
　患者 30 d 生存率

内部验证 ：C 统计量为 0.886，
　AUC 为 0.999（95%CI 为
　0.960～1.000）

接受 ECMO 治疗的
　成人 ARDS 患者
　生存预测模型［24］

年龄、APACHEⅡ评分、ECMO 前机械通气时间、
　ICU 住院时间及 ECMO 治疗后 72 h 内心率

预测接受 ECMO 治疗的
　成人 ARDS 患者
　生存情况

AUC 为 0.867

注：ECMO 为体外膜肺氧合，ECMOnet 为 ECMO 协作网络评分，Cr 为肌酐，HCT 为血细胞比容，MAP 为平均动脉压，VV-ECMO 为静脉-静脉 

ECMO，ARDS 为急性呼吸窘迫综合征，95%CI 为 95% 置信区间，PRESERVE 为预测接受 VV-ECMO 的严重 ARDS 患者死亡风险评分，BMI 为体 

质量指数，SOFA 为序贯器官衰竭评分，PEEP 为呼气末正压，RESP 为呼吸 ECMO 生存预测评分，PaCO2 为动脉血二氧化碳分压，SAVE 为静脉-动 

脉 ECMO（VA-ECMO）辅助后生存率评分，PRESET 为 ECMO 治疗生存预测评分，ECMO-ACCEPTS 为预测 VA-ECMO 患者 30 d 院内病死率评分， 

APACHEⅡ为急性生理学与慢性健康状况评分Ⅱ，DIC 为弥散性血管内凝血，AUC 为受试者工作特征曲线下面积，ICU 为重症监护病房；室速为 

室性心动过速，室颤为心室纤颤
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要输血［40］。2020 年，美国 Abbasi 等［31］基于 ECMO 

数据集，应用 AI 技术预测出血和血栓形成风险，为

临床决策提供支持。2022 年，法国 Morisson 等 ［41］ 开

发了一种机器学习算法，评估心脏术后低心排血量

综合征（post-cardiotomy low cardiac output syndrome， 

PC-LCOS）患者是否需植入 VA-ECMO，通过分析关 

键血液指标，如血乳酸，发现该算法能有效预测中度

至重度 PC-LCOS 患者病情恶化风险，有助于评估患

者是否需VA-ECMO治疗。同年，美国Loyaga-Rendon 

等［32］通过 AI 技术分析了因失代偿性心力衰竭和急

性心肌梗死接受 ECMO 治疗的患者血流动力学特

征，成功预测了短期死亡风险。2023 年，澳大利亚学

者开发了基于深度神经网络模型的 ECMO 预测算法 

（ECMO predictive algorithm，ECMO PAL），该模型结合 

了ELSO注册数据库中的大规模患者的临床数据，用 

于评估 ECMO 患者死亡风险，结果显示，该模型在验

证集的准确率为 72.7%，优于传统 ECMO-ACCEPTS 

评分（54.7%）、SAVE 评分（61.1%）和改良 SAVE 评分 

（62.0%）［33］。同年，瑞士 Braun 等［34］研究了 AI 技术 

在大型数据集和小型数据集中的应用差异，预测了

接受 VA-ECMO 治疗的成人患者的死亡风险。同年，

韩国 Lee 等［35］采用极端梯度提升（extreme gradient  

boosted ensemble，XGBoost）、轻量级梯度提升、随机森

林、支持向量机等6种AI技术，评估了接受VV-ECMO 

治疗的急性呼吸衰竭患者90 d死亡风险，结果显示，

以 XGBoost（AUC 为 0.820）和轻量级梯度提升（AUC

为 0.810）表现最佳。2024 年，Ribeiro 等［36］运用 AI 

技术，分析了接受 ECMO 治疗的新型冠状病毒感染 

成人患者的临床恶化或改善趋势。同年，德国Kresoja 

等［37］利用AI技术确定了VA-ECMO治疗对降低急性 

心肌梗死并发心源性休克患者短期死亡风险的影响。 

该团队使用 XGBoost 算法开发了预测 30 d 死亡风险 

的模型，该模型在验证集中 AUC 为 0.800，敏感度为 

95%，特异度为 55%，阳性预测值为 65%，阴性预测

值为 92%。同年，我国学者利用 K 均值聚类分析了

难治性心源性休克患者的特征，识别出在VA-ECMO 

治疗下患者的 3 种不同表型，每种表型都具有独特

的临床特征和死亡风险，为精准治疗提供了更有针

对性的指导［42］。在接受 VV-ECMO 支持的患者中， 

神经系统并发症很常见。2024年，美国Leng等 ［38］ 使 

用 AI 技术识别出接受 VV-ECMO 治疗的患者神经

系统结局的预测因素，特征重要性分析显示，ECMO

系统中气体参数、吸入氧浓度（fraction of inspired 

oxygen，FiO2）及泵速是预测神经系统结局的关键特

征。2025 年，我国学者基于中国体外生命支持学会

注册数据库和在当地医院接受 ECMO 治疗的儿科患

者的临床数据，采用随机森林、支持向量机、自适应 

提升（adaptive boosting，AdaBoost）等 10 种 AI 技术

评估了接受 ECMO 治疗的儿童发生脑损伤的个体风

险，结果显示，随机森林表现最佳，在训练集中 AUC 

为0.912，在验证集中AUC为0.807，进一步证明了AI 

技术对 ECMO 患者预后的强大预测能力［39］。然而，

在多项研究中，不同算法的准确率、区分度等表现

各不相同，一种算法的表现无法代表所有算法在某

一特定模型中的应用效果。因此，具体的算法选择应 

根据数据特征和实际需求来决定。

2.2.3 AI技术在ECMO患者风险评估模型中应用的

研究热点：近年来，AI 技术在 ECMO 患者风险评估

模型中应用的研究逐渐聚焦于以下 3 个关键领域， 

展示了AI技术在临床决策中的巨大潜力。① 实时监 

测与动态分析：随着对 ECMO 患者病情变化的日益

关注，实时监测患者的多维生理数据成为研究的核

心方向之一。通过应用 AI 技术对这些数据进行动态

分析，可以及时识别患者病情的微小变化，提供实时 

预警。② 并发症预测与早期干预：研究人员逐渐重

视利用 AI 技术分析 ECMO 患者的历史数据及实时

生理参数，以便识别出与出血、感染、器官功能衰竭

等并发症相关的关键因素。通过这种智能预测，医

生可以及早采取干预措施，优化治疗方案，减少并发 

症的发生，进而改善患者的临床结局。③ 可解释性

与透明度：随着 AI 技术应用的深入，可解释性逐渐 

成为该领域的一个重要研究热点。为了增强医生对 

AI 决策过程的理解与信任，研究人员致力于开发更

加透明、易于解释的 AI 模型，如越来越多的 ECMO

患者风险评估模型使用 Shapley 加法解释（SHapley 

Additive exPlanation，SHAP）技术提升模型的可解释

性。这些技术不仅能够帮助临床医生了解 AI 模型

的决策依据，还能确保 AI 技术在临床决策中的可靠

性与可信度，为个体化治疗提供强有力的支持。

2.3 传统模式与 AI 技术在 ECMO 患者风险评估中

应用的比较和选择（表 3）：在构建 ECMO 患者风险

评估模型时，选择合适的方法至关重要。随着大数

据和 AI 技术的快速发展，研究人员面临着多种技术

选择。传统的统计学方法在处理简单、结构化数据

时效果良好，但面对大规模、多维、复杂数据时，往

往表现不佳。AI 技术能够有效处理复杂数据，提供
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更高的精度和适应性，但也面临着训练时间长、计 

算资源需求高等挑战。值得注意的是，这两种方法并

非相互排斥，而是可以根据实际需求进行选择或结

合。在 ECMO 患者风险评估模型中，传统模式适用 

于简单的风险评估，而在需要高精度或实时监控的

复杂临床环境中，AI 技术则可能展现出更大优势。

因此，了解这两种方法在各个维度上的差异，有助于

在实际应用中做出更加合理的技术选择，最终选择

应基于任务需求、数据类型、可用计算资源等多方

面因素。

表 2　AI 技术在 ECMO 患者风险评估中应用的研究概括

研究团队 年份
（年） 数据来源 研究算法 适用场景 模型效能

Ayers 等［30］ 2020 2011 年 5 月至 2018 年 10 月在纽约
　罗切斯特大学医学中心接受
　VA-ECMO 治疗的 282 例
　成人患者

深度神经网络 预测出院
　生存率

准确度为 82.0%，AUC 为 0.920

Abbasi 等［31］ 2020 44 例接受 ECMO 治疗的患者 Logistic 回归、递归特征
　消除、随机森林、
　决策树和 K 最近
　邻算法

预测 ECMO
　治疗期间
　出血和血栓
　形成风险

决策树在出血事件预测方面表现
　最佳（准确度为 80.0%）；随机
　森林在血栓形成预测方面表现
　最佳（准确度为 64.0%）

Loyaga-Rendon
　等［32］

2022 美国密歇根州 Spectrum Health ECMO
　注册系统中 283 例接受 ECMO
　治疗的失代偿性心力衰竭和
　急性心肌梗死患者

弹性网络算法 预测 30 d 死亡
　风险

训练集 ：AUC 为 0.680 ；
验证集 ：AUC 为 0.720

Stephens 等［33］ 2023 ELSO 注册数据库中 2017 至 2021 年
　23 182 例接受 VA-ECMO 治疗的
　成人患者

深度神经网络、Logistic
　回归、随机森林、
　决策树、支持向量机、
　XGBoost 和 AdaBoost

预测死亡风险 训练集 ：深度神经网络表现最佳
　（AUC 为 0.830，准确率为 75.5%）；
验证集 ：AUC 为 0.800，准确率为
　72.7%

Braun 等［34］ 2023 2007 年 1 月至 2019 年 12 月在瑞士
　苏黎世大学医院、法兰克福大学
　医院和维尔茨堡大学医院接受
　VA-ECMO 治疗的 837 例
　成人患者

条件推断树 预测死亡风险 训练集 ：小型数据集 AUC 为 0.700，
　准确率为 64.2%，Brier 评分为
　0.210；大型数据集 AUC 为 0.710，
　准确率为 64.6%，Brier 评分为
　0.211。
验证集 ：小型数据集 AUC 为 0.600，
　准确率为 57.0% ；大型数据集
　AUC 为 0.630，准确率为 65.0%

Lee 等［35］ 2023 2012 至 2021 年在韩国 16 个三级
　医院和首尔国立大学盆唐医院
　接受 VV-ECMO 治疗的 446 例
　急性呼吸衰竭患者

Logistic 回归、轻量级
　梯度提升、随机森林、
　支持向量机、XGBoost
　和多层感知机

预测 90 d 死亡
　风险

XGBoost（训练集 AUC 为 0.820，
　验证集 AUC 为 0.750）和轻量级
　梯度提升（训练集 AUC 为 0.810）
　表现最佳

Ribeiro 等［36］ 2024 在葡萄牙圣玛丽亚医院 ECMO 中心
　接受 ECMO 治疗的 81 例新型冠状
　病毒感染成人患者

随机森林、支持向量机 实时预测临床
　恶化或改善
　趋势

随机森林表现最佳（AUC ：4 h 为
　0.918，8 h 为 0.894，12 h 为 0.856）

Kresoja 等［37］ 2024 417 例接受 VA-ECMO 治疗的急性
　心肌梗死并发心源性休克患者

XGBoost 预测 30 d 死亡
　风险

训练集 ：AUC 为 1.000
验证集 ：AUC 为 0.800（95%CI 为
　0.710～0.890），敏感度为 95%
　（95%CI 为 0.880～1.000），特异度
　为 55%（95%CI 为 0.400～0.690），
　阳性预测值为 65%，阴性预测值
　为 92%

Leng 等［38］ 2024 2016 年 6 月至 2022 年 4 月在美国
　约翰斯·霍普金斯医院接受
　VV-ECMO 治疗的 99 例患者

随机森林、CatBoost、轻量
　级梯度提升和 XGBoost

预测神经学
　结局

XGBoost 表现最佳（AUC 为 0.870，
　Brier 评分为 0.250，准确率为
　80.0%，精确度为 71.0%，召回率
　为 81.0%，阳性预测值为 0.860）

Deng 等［39］ 2025 中国体外生命支持学会注册数据库
　（来自中国 112 家 ECMO 中心）及
　在中国人民解放军总医院第七医学
　中心、郑州大学附属儿童医院接受
　ECMO 治疗的 1 787 例儿科患者

神经网络、广义线性模型、
　随机森林、决策树、
　支持向量机、AdaBoost、
　朴素贝叶斯、梯度提升、
　轻量级梯度提升、
　XGBoost

预测脑损伤
　发生风险

随机森林表现最佳〔训练集 ：AUC
　为 0.912（95%CI 为 0.871～0.953），
　Brier 评分为 0.108，敏感度为
　70.0%，特异度为 90.0%，阳性
　预测值为 96.3%，阴性预测值为
　44.3% ；验证集 ：AUC 为 0.807
　（95%CI 为 0.714～0.899），敏感度
　为 83.0%，特异度为 63.0%〕

注：AI 为人工智能，ECMO 为体外膜肺氧合，VA-ECMO 为静脉-动脉 ECMO，AUC 为受试者工作特征曲线下面积，ELSO 为国际体外生命支 

持组织，XGBoost 为极端梯度提升，AdaBoost 为自适应提升，Brier 评分为概率预测准确性评分，VV-ECMO 为静脉- 静脉 ECMO，95%CI 为 95% 

置信区间，CatBoost 为类别特征提升
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态预测模型，结合长短期记忆网络和强化学习算法， 

实现对病情变化的实时预警。此外，未来的研究还可 

通过融合传统的生理参数、影像学数据、基因组数

据、病理报告等多模态数据，为ECMO患者风险评估 

提供更丰富的信息资源。

3.5 增强模型的可解释性：增强模型的可解释性是

提高临床医生信任并推动 AI 技术在医疗领域广泛

应用的关键因素。当前许多 AI 技术的可解释性仍然 

存在不足，限制了医生对模型的理解与信任。未来研 

究者需致力于开发更加透明的算法和工具，揭示影

响预测结果的关键因素，并提供可视化或易于理解

的解释方式，帮助医生判断模型的准确性，增强 AI

技术在临床实践中的应用效果，改善患者的治疗效

果和安全性。

3.6 经济成本效益分析：ECMO 作为一种高成本、

高资源消耗的治疗手段，其经济效益评估将成为患

者管理和医疗资源合理分配的关键。在 ECMO 患者 

风险评估模型的开发过程中，研究者除关注临床效

果外，还需加强对经济成本效益的分析，具体包括对

ECMO 治疗过程中涉及的设备、药物、护理、人力资

源及长期成本（如并发症管理、住院费用）的评估。

经济学评估有助于医疗决策者衡量 ECMO 治疗的性 

价比，从而优化资源配置，合理利用 ECMO 设备和治 

疗手段，使临床与社会效益最大化。

4 总 结

 随着ECMO技术在危重症医学领域的广泛应用， 

接受 ECMO 治疗患者的风险评估模型研究得到了迅

速发展。尽管基于传统统计学方法的风险评估模型 

在早期风险评估中具备一定的临床应用价值，但其

在计算效率、处理复杂非线性关系及模型泛化能力 

方面存在一定局限性。随着信息化时代的到来，AI技 

术凭借其卓越的数据处理和模式识别能力，为接受

ECMO 治疗患者的风险评估开辟了新的研究方向。

AI 技术的引入，使得医疗团队能更加精准地评估患 

者健康状况，制定个体化治疗方案，不仅为危重症患

者提供了更高的治愈希望，也在提高整体医疗效率、

降低病死率等方面展现出巨大的潜力。
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