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[Abstract] Sepsis-associated acute kidney injury (SAKI) is a life-threatening complication of sepsis, whose
pathogenesis involves the intricate interplay of multiple factors, including dysregulated host immune-inflammatory
responses, microcirculatory disturbances, and metabolic dysfunction. Aberrations in epigenetic modifications, including
DNA methylation and histone acetylation, dynamically modulate gene expression networks, thereby influencing cellular
metabolic reprogramming, activation of pro-inflammatory signaling pathways, and disruption of microvascular barrier
integrity, are closely associated with adverse clinical outcomes in SAKI patients. As a central regulatory hub of gene
expression, epigenetic modifications profoundly participate in key pathological processes of SAKI, including immune
homeostasis imbalance, metabolic dysregulation, and microcirculatory dysfunction, through remodeling chromatin
architecture and non-coding RNA expression profiles. Although emerging evidence suggests that targeting epigenetic
regulation may mitigate SAKI-related pathological damage, the precise molecular mechanisms remain incompletely
elucidated. This review systematically summarizes the regulatory roles and molecular mechanisms of epigenetic
modifications in SAKI, aiming to provide a theoretical foundation for advancing the understanding of SAKI pathogenesis
and developing novel therapeutic strategies.
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