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[Abstract] Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection,
characterized by high morbidity and mortality. Acute lung injury (ALI) is one of the earliest and most frequent
complications of sepsis. Inflammatory response, oxidative stress, and ferroptosis are important pathogenic mechanisms
in sepsis-induced ALI. Nuclear factor E2-related factor 2 (Nrf2), an essential antioxidant transeription factor, plays a
pivotal role in alleviating lung injury by regulating multiple signaling pathways. This review systematically elaborates on
the structure of Nrf2 and its protective role in sepsis=induced ALI, with a focus on how the Nrf2/heme oxygenase-1 (HO-1),
Kelch-like ECH-associated protein 1 (Keapl)/Nrf2, silent information regulator 1 (Sirt1)/Nrf2, and phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt)/Nrf2 pathways collaboratively alleviate oxidative stress, suppress the release of
inflammatory factors, and inhibit ferroptosis by regulating downstream target genes such as HO-1, glutathione peroxidase 4
(GPX4), and solute carrier family 7 member 11 (SLC7A11). Furthermore, the article summarizes the lung-protective
effects demonstrated by various agents, including B -globin, curcumin, and hyperoside, through the specific activation
of these pathways, providing a solid experimental basis for optimizing related treatment strategies and developing new
drugs. This review aims to offer a deeper understanding of the biological significance of Nif2 in sepsis-induced ALI and
to provide theoretical support and research insights for future targeted clinical therapies.

[Key words] Nuclear factor E2-related factor 2;  Sepsis; Acute lung injury; Oxidative stress; Inflammatory
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PR PEAK I | FEMLAE Y, 51 AT 1A 0 R e 5 [ 4 A1
SUAE SRR RN | B AR IE T MR ALL Y
FEHLH T I F E2 AH5EHE F 2 (nuclear factor E2-
related factor 2, Nrf2) N HAHOCAF 530 B AE % LEHL ] & 4%
HEEAEN . BB Nef2 B ARG AR RERAE ALL AR
HIWFTE I A TERR LI RIR T s S B i S
1 Nrf2 B4

Nrf2 ( X FR NFE2L2) /2548 8 1515 Cap'n'Collar W5
T A T, B 5 2R A O R T R RLVE T S Ak
W7o Nef2 BAT 74 CNC IR URPE Y Neh 2550, 44
SEFIN Nref2 (19 1EH DRl 2 OCH 2L,

Nehl Z5 43040 B CNC K% s I 58 E i hr i =X 4G
F 3 (CNC-bZIP), if i 5 /]y Maf 2 1 45 5 T8 iS55 3R K,
PR 45 & U E AL I 64 (antioxidant response element,
ARE) F AR50, Neh2 45 4 $ S2 72 Nef2 9 N 3
X3 BB Keleh £ ECH M1 1 1 (Keleh-like
ECH-associated protein 1, Keapl) ZE A LR . — g A
Keapl FLAT & 55 M 71 (4 ETGE J67%, 7 A2 IR M 1
DLG /7. Neh2 Z5K938 5 Keapl 2Z[H] (1 X7 s R HIL I 78
Nef2 1 5 28002 A Ak 7 b & TSR Neh3
SERIRAL T Nef2 (9 5R B 2K S, 8 2o 5 Nef2 % Sl By P 1
CHD6 % £+, [ 2L ARE K15 4 19 % 35", Nehd A
Neh5 54 2T SR i i 45 #4388, (transactivation domain, TA),
BTN )5 PR RR AR 1T N TC 4 G B 1 (cyelic adenosine
monophosphate response element-binding protein, CREB ) iX—
SEROE I T45 4 AR BE Nef2 (5S35 T L Besh, Nehd A1
Neh5 45 14 35 T 5 4% A 3L 00 A 52 (AR DG L3300 15 1 3
(receptor-associated coactivator 3, RAC3). FLARIEAY B K+ 1
(amplified in breast cancer 1, AIB1 ), 28 [# A7 (AL 1 K7 3
(steroid receptor coactivator-3, SRC-3) MHEAERT, ik —A 1
Nef2 £ 1 ARE SB35, Nehs 45 Hdali i 4 Ak i
TR 1 4% i 1 E 5 (nuclear export signal, NES) 7475 Nrf2
TEANLA I E A2, Neh6 4545 540, & DSGIS Hl DSAPGS
PS5 8GR 5T OC I AR AE Y , il e 5 B3 2 38 4 e AR
T TR AR AT T A S N2 R - R
HH( B-transducin repeat-containing protein, B—TrCP) B —
i F-box E 1, 1 Bl Nef2 [ . Neh6 £ #y 3k i) DSGIS
Jriid B-TrCP U Nif2, 75 DSGIS Wi P22 28 FRFR L)
B ER AU T Nef2 3l i3 B-TrCP (B4 & X F# 7, Neh7
ZE PN o 5 R X 324K o« (retinoid X receptor alpha,
RXRa ) FE M) Nef2 (93645, Nehl ~ Neh7 £ 45
TEZAIKAE b LRI IRI7 Nef2 BA e Pl AT Al i e sl
SEMUARHCE AR | DRI REAE ALL (4 245 H Bl
2 BRBIESI%R ALI
21 RAESN S A AN B HE N R R 2
(lipopolysaccharide, LPS) & ERAE ALI BYCEER0ORIN 7. 75
JREERE 1, LPS il d 5 Gy A SZ AR 25 G 39 i 5 40 e I
Tk TR Ao 3K — A SR T A

PERLZ L, DI 4 AL 0 A B ] A7 05 D0 22 AR
D7, BEJICE P 4R (reactive oxygen species, ROS), JE R 1 Pk
2 60 L A5 A0 RO AL S 5 TR S T A A o
L 291038 3o 0 A2 5 5% R F B (nuclear factor-xB, NF-xB)
SFIRRA T, PR HE A 2 -1B (interleukin-18, 1L-18) Al
IR HE R T - o (tumor necrosis factor-o, TNF-au ) 25 7B
B, BRI S
FACNAERRRERE ALL rh o e /e H], 1 M2

ZHA A A B AR RS R A d R RS S, i B
(4R R EREAR TR | AT RRAEFITEBRSZ AN . (HAERRARAE
e, PR 2R R e g 4 R e A 2 A5 A, R
R A, TR T (0,0 B
(superoxide dismutase, SOD) BEA %tk 0, 7tk M it &= 4k
A (hydrogen peroxide, H,0,), AR E LN i, figrifitign gl
TEMGEAERAE T B Lae 71 N RE i B9 HL0, AR BE X IHE
B, BTSN , 7 A Rk 3 (~OH), B EA I
P 5 TRl B3 S AL WG T A4 HL0, AR RS , i — 2
T ARG R RE AL . JO0E N 5 A BTN AR
IS EARER , (SR
2.2 BRIET : BRAE TR —Fh i BRI AR B S AR R
SLEAANRIET TR, EERBUABA R | 5L AL
PR P ik 3247,
221 PACSEE  BRAER L Fe' I Fe’ IE UG
o IEFEAEBUR AR Z RN Fe™ 0 LIMEFERE AT,
B i 4 B IR g SLCA0A L IRAGIZ 2 11 1 HEH 4™
HBFRE TR, Pt BUR S FEIRE M A& AL
WL IO ERIE T R SR A B B fiE S H,0, &
A2 5 SN A B —OHL, it 240 it B v ) 22 AN 1 R AR iy iR
(polyunsaturated fatty acids, PUFA), 5l ENg AN, f%
LR PEIET P Wang 455 BFF I RACHEETL S kR
i A DG A 475 (AP A 2R, FEIE Y S/, e ;R AR
KV TH s MILTE % | ek 2 1 D U R R A1 5 R Ak
W B 2R ELH 5 AR AP A A LR B IR Z ] ERFE bR
P AN AHBET R R KT S, R KT B
R SRR A ZE AL AT B S IR RRAE ALL 19/ SRR EEAR G
222 IRFUT AR - iR B AR BRAIE T K A A G
iR, F L R Y PUFA R A BRI ROS S5 T
Rt EAG RN, PUFA 43T H 9 Bk - B3 OUGE 45 g %
5 ich 4 A 3 R, S Tt Ak R I R
Az DI R 45 PUFA TE A BETBE LB G A 5 UG 4 7% 10

i O IEL 0 ok 5 2 A% G 3 (9 1L T B AR 0 S A A A A
BEAR, JE W PUFA-BRIR 2 &%), Bl S TR IR A G B /E TR
WAL A g B U A, BORARIE TS Ak, N
(malondialdehyde, MDA ) Fll 4- 35 3L IG5 e 25 R = Wy vl 7

Yo Q= RbAE o { NI 11 ) 07 1 N <K 1 1
HIR L TE ALL il & ROS Al e #EmiAR it AL SRR 0
Toll FEZZ A4, E— NN JEAE S0, 273 I B iod S8 AL A
TURBAET A 5T, o AT BB 175 R AE S, 2 5 MREIE
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223 HUAALRE S AEIEE AR FRASTS A A e BkE
T SRR A ROS F4 A A AL R e S5 IR / 43 AR S e
iz 8 H System Xc ., 2 B H K (glutathione, GSH), 43¢ Bt H K
ALY 4 (glutathione peroxidase 4, GPX4 ) F[F]2H W AgHT
AL FSE (System Xe /GSH/IGPX4 fll) At A (L ik SRz ™
System Xc¢~ i SRR TR AR K% 7 5L 11 (solute carrier
family 7 member 11, SLC7A11 ) TR A R RS MM
AR LU ) 3 45, A4 A0 B X I R R 2 40 B, 40 HBL 1Y
o R AR AN R SR R 25 GSH A B s
GPX4 & —Fh i 2 (B R i S AL W, BRI GSH 41 il
b AR S A U o JE R R 5 e , ikl i o ok 4
Ak, BUBFARBET 1 A 10 2 FERR e | R SR BRAS T
RBP4, S BUR LS AR, 51 R EkAE
T2 RS R, 7R ALL /N R A S A R A 1
(glutaredoxin-1, Grx1) B R FITE T B 2 TR, S B A
S- AW H BRAL KT FH 5 5 EELR AR T Grx ! 982K, 38 4
NS MR LA 1 5 (fatty acid-binding protein 5, FABPS) 7
Cys127 (519 S- A M H KA AT, #E M2 o FABPS i 44
Ak W) T A 354 9 400 155 3% 52 AR (peroxisome proliferator-activated
receptors, PPARB . PPARS) (W45 & I 30E T UFHL M I L fi
LA G AE SR, R 5 407, 425 GSH AR 1
P A5 E AN B AL H B UIARDC , i — A S THT Rk
RGRMAE ALL T EEAE

3 Nrf2 R EMBEXERAERSE AL FRIER RZ5H T
3.1 Nef2/ I NS HE -1 (heme oxygenase-1, HO-1) 38 [ .
HO-1 52 Nef2 W5 T I RE R DA 1 g — PR i
CLZ AR A v i R A , HO=1 b I 2138 73k
BAUA PR AAVERI— S LB ISR R, Hoh— ik
VBRSBTS 50 T A PR 5 SR R B A AL =4
LT ZR R SRR NIRRT R, I HO-1 92 Nif2 A 4%
PR TR SR IR T Nef2/HO- 1 S SRR R X 42
AEREI AL . Nef2 06 J5 AT HO-1 A% SRk,
HO-1 3535 B 5 251 2 M T Ui 4 Ao i 16 1,
SOD | AP H ki S Ay it A iek e A b U o K Sl 3 T B
0,” Hl H,0, 55 ROS [ Hh By 4% E AL A s , 9/ S Ak
W RE  RAFSUEAL R R A, TR H
ZEFHLZFLAR (cecal ligation and puncture, CLP) if5 e aaE
ALT /BRI B, B-BRE H AT DLz Zh Nef2 5
TR LR HO-1 9B 3R 3K, BRI TNF-o . IL-18 1 IL-6
S I K IRV | 28 fige i 28 2003 B 403 , el i 7K fieb 5
ROS U, R B-EREE ML PG Nef2/HO-1 3 i, A0
2R PURALIER].

Z2 T 25 ) AT 38 oL T Nef2/HO-1 38 5% U 5% e i E AL
FRERHCE . Rao %617 BB, 53 (9045 60 °T LA o Nef2/HO-1
i DA CLP 75 S il 2 245 403, AR S AU I Y R Y
HP A0 A R 40 i KR, 2 MDA B i AL Y
SOD 5 GSH 45 S Ak BLEAE A 5 [R5 1 2500 1 ik 7T LA 3

I PR 98 T 2R 1 Bax 19 5A, BB TOE (1 Bel-2 19
Feak, DT U Bl 4 B A T, S X B A B R 9T T
Liu 254858 1 1A oA PR AT S 36 RS 1 9 I T T AL ;140
(LPC14:0) X} LPS i 5 Ik 3 it ALL /9 52 ), &5 S 3R 0,
LPC14 : 0 i 33 #76 Nef2/HO-1 38 #% & ¥ P % | Pra L F5#
Bl Z EEM . b A/NEE T, LPC14 : 0 W22
JERE SR FEAL L3, 32 THAl 20 40 B e B 1 201
Occludin MR35, BB T B2 bR BRI A8 5 A RO SE 50,
LPC14:0 AT LLAHIRCT Fed E b & (lert—butyl hydroperoxide,
-BHP) 75 5 9 /1N U Kz 400 (MLE-12 20 i) 98 7= F 5
BETNRERIR 5 74> T XF #5286, LPC14: 0 5 Nef2 HA 1
FERRE A A RE T, 2 Nef2 o SMEA 157 ML38S + HilJs
AT S LPC14:0 % Nef2 . HO-1 Jz B35 428 L Ve,
S IAE T Nef2/HO-1 7E LPC14 : 0 W% e e ALL
P K A
3.2 Keapl/Nrf2 i : Keap1/Nrf2 [AlREA0 A AN 300 5L
i B, Keapl Ji— oS A 98 752 2 14, 0 A S AR
Nrf2, 5 Cul3/Rbx1 E3 V2 Z G M8 AW & ANEH A5 Nif2
(R 24k 5 e, T I3 Nef2 7ERA S F 08 K,
iR B 1) 2 A A ) 2 ) SRk R R, Keap X Nirf2
MR T, Nef2 NE S id s TE EgEEN, 5
ARE 256, W00 T bt A T AR 2 I 40 0 32 [N )
SEARIR , Z 3 [ 1 TR A Bh TIE BRI B ROS, FEAIE MDA 7K
-, JEHR T GSH L SOD 45 PR 4T S A B 5 ()3 4, T 2%
[ ARIANR: Cinl/ TR

L2 R BRI NT LG 3 VY Keap 1/Nef2 18 B 04035 i
BAE ALL, F AR AF45 S CLP 857 0 Mo
ALT BRI BT T 75 BRI 22 9 25 %) Nef2/Keap 1 38 A9
PEFEAE FE KO I A2 R VE . PRI SE 26 B , 75 Bk
A2 Z AP AT LU 2 By Nef2 B R HO-1 9 mRNA Al
B IR G Nef2/HO-1 383, #] Keapl BY2IA, IR
W SOD I PE, FFE% MDA | 1L-1B . TNF-o 1 IL-6 25485 AT
TR, Y R P IO SRR A S 0, A il 7K B 5 R 400 i
B, I H B PR 2 Y R S S R Rk . A AT
Al SO RIFFE r A R 2 R S SR I e v 4
SBUR R A BRI D BRI o AR, eI 2 8
e R HLIR 25 A BGEVE T, Chen 250 [ BE ) FH i3k — 6 5
ST T G 2 WK X I LRI VR L S5 3R 0 4 22T T
2 /N AT 3 Bl Il v K i R 2 80 B A5, X
IR 5 TR L s AR IR At Ak L 48 R GSH 7
HOAPLUEAEG R G, B4 E S Keapl 454,
FHLIBT Keapl 5 Nrf2 9 AH F.4E F, 406 Nif2 72 2 AL B A, 8
W N2 B3k, I N2 5 GPX4. SLCTALL BZE 4, 318
R LG SR M IR R AT T, b /N RNA (small
interfering RNA, siRNA) Fe 5 Ner2 {15 5] M1.385 1 55 16
HE—2BESE, 4 22 BT I /E AR T Nef2 (19330 , 5 HO-1
8 SOD2 TG 5 4 FHLUL 5 R A B L o, 4 2Bk
AT FHELE G Keapl 0 Nof2 , 2230 L1 A8 8 1) 1 A0 g 1 RL 4
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P AR . X — R IR Keap l/Nif2 3 FK IR YT
e FEAE ALL $24E T HEE 55000 IR
3.3 VLB {E E 9T T 1 (silent information regulator 1,
Sirt1) /Nef2 38 5 : Sirtl Z—Fp M4 E A L O BALEE, B
T REMR AT NR G e BR N2 RS — A R, FERLIR T T2 3 5 R
FEAAT | A T R A e R R . KRR,
Sirt] 5 YA W B BEAE ALL 59 P 7E 167 L0 Sinl fY
T PO R AR AR A% 0 DORIVEESE 45 R 380 B, O 5 N- 2K 3t A
C- A3t ) 4L P HG 5 2 g 2 M 2427 Sl AT 3 3o 98 4
Keapl #4%, it il H 5 Nef2 BOFE RS, Nof2 E A 4N A% S , 38
254 ARE #0% N EE I HO-1, A b H Ak S- 56 i1
FIk ML B AL T R ROS 5 R AR R NG T
AR NP A B, 7838 5 PR Bel-2/Bax 25 TR G [
T, ORI SEE A SHUR TR AR

[ ¢ Sirt1/Nef2 38 J AR AL, A RIS ABER | B
S B R B0 T RN L B i 6 5 A AT T 2R R
% Deng % BF5E W, 4 21T A% LPS 75 S 14 i
FLHLUR A, FEAIE TNF-o  IL-6 . IL-1B 93535 , K Z0-1 Fii
Occludin F7KF-, DT EACE il 1 iz 5 B T RE A Bz 2230
U Sirt] ik, AR IE Nef2 507, 9% GPX4 2235 . GSH &
L, PR TR IR AR AN ROS A=, M il 4%
FET . Ping % ' 7E CLP 7 G i e 750 /)N BB 55 LPS 175
T ATP ARSI IEsEs , 2B BB AT XLIX ] Gk 22 mesg il
HEVRBIT, I ROS A2 AT NOD BEAZ IR 1 3 JAE/IN
AL, HOFT LA Sirtl/Nef2 05, RIFEHR . PrE L .
LI T R SRR F WE 25 AR, B 12000 5 7E e B iE
AL HA FERE L,

BRRSRYI 2 A, Bai 261 % ST Sf U5 ) 78 5T 2
FI AR AT 3 S EOE Sirt1/Nef2 B IEEE HO-1 5 GPX4 93
K R SE AL R S B AT T 5 AN, T w] S I A . M1
WAk, W/ 9 0E PR, )25 B AR DR AR F 5 7E Sintl sk
SRR AT, i A TR ) 3 S 4 PR 4/ o A ) £ 4
HH S0 , T PH LA 7 48 St SCHE
3.4 5 Mk WL B 3- 9 8 (phosphatidylinositol 3-kinase,
PI3K)/ & 14 i B (protein kinase B, Akt)/Nrf2 i j# . PI3K
VBN EEAF 50T, AN MEAE TG WA 5 R Tl F vh R 4R
BT B 7R RI AT, PI3K B
P Akt 14 B85 057 55 380G , 1 TT (6 T 90 Nef2 B R 1L, 42
U AR A 3 DR S Ak S AN A e I SR Ak e Y R
RO PI3K/AL {7 5 3 % AT O Nef2 , HCAE AT 4547 40
i 4052 S S AR A

BT X} PI3K/AkUNf2 38 [ 7 e 5 5E ALL rp 1) £2 47 2L
N, B Z WU 1o sh ) S 86 M AN S50 AT T R SR
HIF. Zhou %5V FE LPS 5 T O e T A ALL B2 0 vpr 2 8L,
RUAT SRR AT A= 4 €27 3 3 FTE PI3K/AKYNrf2 3 [ 7] 45 3%
ZZ it B0 S A AR A0 , Fe BN B AR A AE IR F 7K i b
ROS PR AN I 7=, $2 7+ SOD . GSH K& HO-1. fit A kit
JEfitE 1 (NADPH quinone oxidoreductase-1, NQO-1 ) &5 E AL

il i) ik o 40 HT PISK #0570 LY294002 1 Nref2 410 ] 57
ML385 J, €27 HYLRA AR PR 3 BELIT , 56 B HEATL ) At T
PI3K/AKt/Ntf2 58 J (30 . Fang 26 BF5 s , A% R[]
FEIE 1 PI3K/AkYN2 3 B 5 HO-1 Fl NQO-1 [ ik, &%
i LPS 1753 i 45403 5 B B Sk X SeRIF AL e s T
PI3K/AkUN2 38 B BRHEAE ALL By ifa P A SCHEAE
4 Nrf2 T SRR TIFENE

Nrf2 TEMEEAE ALL o W 58 T AL & 44 ]
HEARTT 20, TEEALR T, Nef2 5 ARE 454, 4%
Z A5 R i AL AR SE T ARG A EE 1 B R il s . 1K
SR BT R RETE BRAE T 4 rh 2808 K gk / & AR, b
IR GSH AR =260k . 8k / & m AR,
Nrf2 BESSIRE Bt A 1, BV R LR e R Bk . AFX e
S, 7E Keapl BRI 258 U BE R BE 19 5% sRoKOF i 3%
AR T M P BREG E AAHAT 5 BT, Nief2 35k SLCA0AT
(I, BRI A0 ML A i SE 8L LR P R 4 T L A 20
IR T HA AL P e 5 Rt AT, DR B BRI T 25
J I A A i A AT AT T A O HLAR T R ]
AR, Nef2 38 V895 B BT AR OC IR 7, S R A
48 (small heterodimer partner, SHP). PPAR vy 520 20 Jif Yok

B AR P SRR, O3 A 15 S R T A D KR 1 IR

C1-C3 (aldo-keto reductase family 1 members C1-C3, AKR1C1-
AKRIC3) 5 W B & W 1A1 (aldehyde dehydrogenase 1A1,
ALDHIAT) (2R 3% , fig PEAE PR T 28 53 ) 30 i Ay I i S A
RIR , AR R IEFGS A ™ Y. AN, Nif2 38 b 18 4 45
A -6- W R I B, I A 5 4 i 1T (reduced nicotinamide
adenine dinucleotide phosphate, NADPH) i 4 i, & GSH %¢
ARG AR BRI 78 GSH AR, Nef2 PR
LA TN, £5 T GSH WA R FIFS Ak . —Jrm,
Nef2 [ SLCTATL BYJEIRZk S HC bt i)~ e 2R / 4%
R ) 18 8 1 xCT X2 D202 1 48 0, I 4 2R -
2 e PR At ) A A S 5 0801 I R A I H JIR 3 1
FiE, 98 3l GSH B9 13 15 73— 77 TT, Nef2 4% GPX4 Iy 3RK,
TR 5 i Ak RGBT R AE R AR it
Hh,—Z B H FH GSH 5{ NADPH (1) fi# 7% 15 38 IR Bl 2 W4 e
TR S- 578 P1. AT AR S- 54781 ol | i LY AL iR
H 1L A YRR E A 6. L & I 5 1 152 Nif2
A SRR L R

BRIE T AR ST — 2 38 75 1 Nef2 (14 SC B A .
Zhao %57 VBT KB, WIVK BRI 24 R D9 Il O Nef2 55
i 9% R LPS 15 51 ALL 2 A GPX4 ., SLC7A11 £k -
P, Fe® | 4- LT AR T TR, DI RBE T, Il i
HYVAAINT 5 RAER R . Nef2 B IR Nef27/ /N RS2 5k
— D RTIE T PR ) BRI N2 (9 IE# 3K Lai 457
AR A BE A, K B RERE ALL rv IR A S8, PR
R4 1 (uridine phosphorylase 1, UPP1) 422 ; %k st /M
PRAFATSON Nef2 %, 25 GPX4, SLCTA11, HO-1 Y53k,
R SRR I IR, A0 T S T L G A S R 4 R A
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BRIET 5 4 Nef2 SRk 45 T RRIET 175 500 0] 2 0k 55 PR 1)
TRy ER . MR B AR I h UPPL 3k T 5 S e 40
it 35 3 7K S B AR 45 DD AR G, $27R UPPL AT il 38 3 5% 1) i 758
IR S 5 0PRSS BRI . Wang 25 ™ WS¢ B W] T
B AU TS A 7 1 (AU-rich element-binding factor 1,
AUFD) FEVRE BRI T ML . EE3ET - v, FHE /WD
RIS EN TS AUFL 912 Z A, AR 1A
FREME, 330 AUFL FRAKF-F M. AUFL 456 9 fa e
Nrf2 mRNA 35, 2 #F GPX4 ik, I ATF3 mRNA 9%
fife FRBR TN SLCTALL A 3RIAE R, & 3400 a) 9815 1 T, 34
SRANMHTALEE ST, FIRIERIET . AUFL $5/NRAE CLP 5
TR AR 40 B 2 N, B AUF L 7E AL | BRIZsE T
BAESAEEH

& Nef2 J FUAH OGE I AE M ALL T I i it 3
B TZ5% VR 8 3B S Fe 2RI g Lk 1.
5 N 2

Nrf2 B FUAH S 6 A e #E ALT il i B fb P&
FAMHRACT R AR E A . Nef2/HO-1, Keapl/Nif2 .,
Sirt1/Nif2 . PI3K/Akt/Nrf2 5538 # 1] 845 T i GPX4 . SLC7A11
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